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. This paper consists of SIX (6) questions in TWO sections.

Section A is COMPULSORY and is worth 40%. Answer ALL questions
in this section.

Gection B consists of FIVE questions, each worth 20%. Answer ANY THREE

(3) questions in this section.

. Show all your working.

. Start each new major question (Al, B2 — B6) on a new page and clearly

indicate the question number at the top of the page.
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THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS
BEEN GIVEN BY THE INVIGILATOR.
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SECTION A [40 Marks}: ANSWER ALL QUESTIONS

QUESTION Al [40 Marks]

(a) Consider the partial differential equation
U — 2SI0{T Uy — 008° (T )ttyy — cOS(T)uy + " = 0.

(i) Classify the partial differential equation by stating its order, linearity, homogeneity, and

kind of coefficients.. [2]
(ii) Determine whether the given partial differential equation is hyperbolic, parabolic or
elliptic. ' (2}
(i} Determine the characteristic curves {(z,y} and n(z,y). [6]

(b) Consider the Cauchy problem for the wave equation with —co <2 < oo and t > 0:
P — 4pee = 0, 2p(z,0) —sin(z) =0, p(z,0) = 4.
Determine p (z,t}. [7]
(¢} Solve
2y +up =2, u(z,0)=u(0,t)=0,
using the method Laplace transforms (7

(d) Derive Parseval’s identity theorem for the swummability of the Fourier series coeflicients of a
function. 16}

(e) Consider the wave equation

by = Ceey O<z<m, t>0,
¢(z,0) = 3sin(z), 0Lz <,
th(ﬂ": 0) = (0,
$(0,1) = ¢(w, t) = 0.

Write down the ordinary boundary value problems for X (z) and T(t) that must be solved
in order to obtain the solution of the wave equation using the method of separation of
variables. (5]

(f) Suppose that the temperature distribution in a rod of length = is given by T'(z,t). We
assume that one end is kept at zero temperature and the other end (z = 7) is insulated
such that there is no heat How. Write down a model that could be used to determine the
temperature distribution T'(,?), provided that the initial temperature distribution is given
by 2% sinh{nz). 5]
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SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

a) Consider the partial differential equation

w+u=c¢e, uz0)=e"

i) Determine w (z, t) using direct substitution. [7]
ii) Determine the long term behaviour of the partial differential equation. [3]
b) Find the general solution of [10]

(y + Uty + Yty =T — Y,

using the method of characteristics.

QUESTION B3 [20 Marks]

Consider the Cauchy problem for the wave equation with —co <& <00 and £ > 0:

P = v2pwwa

pz,0) = é(=),

pt(ﬂﬂ,O) == 'i,[)(:l'}),
where v is a constant. Show that the solution of the wave equation is given by: [20]

1 1 x-tut
plont) = (o) + oo o)+ [ pien)
E—wvt
QUESTION B4 {20 Marks]

(a) Use Laplace transforms to find a solution [12]

Upy — Uy = sin(mz), 0<2<3, >0,
w(z,0)=0, 0<z2<3,
w(0,£) =0, u(3,1)=0

(b) Using the fact that the Laplace transform of u{z,t) with respect to the variable ¢ is given
by

L{u{z, t)} = /m e Stu(z, t)dt = Uz, 8),
Show that £ {%} = sU(x,5) - u(z,0) 8]

QUESTION B5 (20 Marks]

Consider the radioactive decay problem given by
Uy = Ugy + 4™, O<ax<m, t>0,
w(z,0) =sin(z), 0<z <,
u(0,t) =0,
u(m, t) = 0,

Find u(z, t) using the method of separation of variables. (203
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QUESTION Bé6 [20 Marks]

Consider the Dirichlet problem of a sphere of radius r = a.

| o ( ,du 1 8 (., . 0u

— P —im— ——— ] € e = <y < a.

5 (r 8?)+sin(qb)8¢> (31n(¢)a¢) 0, 0<r<a
u(a,¢) = f(¢), 0so=<m

Find u(r, ¢) using the method of separation of variables. [20]

END OF EXAMINATION PAPER
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