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6.
7.

. This paper consists of SIX (6) questions in TWO sections.
. Section A is COMPULSORY and is worth 40%. Answer ALL questions

in this section.

. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE

(3) questions in this section.

. Show all your working.

. Start each new major question (A1, B2 — B6) on a new page and clearly

indicate the question number at the top of the page.
You can answer questions in any order.
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SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION ALl [40 Maorks]

a) Consider the following equation with —co <2 < co and { > (:
Uy — N = 0, w(z,0) =3, 1wz, 0)=12
Determine u (z, ). (7]
b) Express the partial differential equation

Uy = Uy O0<2<100, 120,
u{z,0) =sin(z), 0<z <100,
w(0,£) = 100, w(100,%) = 200,
in the form such that the associated boundary conditions are homogeneous. [7]

¢) Write down the ordinary boundary value problems for X'(z) and T'(t) that must be solved
in order to obtain the solution of the wave equation

P = s, 0<e<m, t>0,
¢(z,0) = 16cos(z), 0<z <,

(:bt (ﬂ';', U) = 0>
#(0,t) = ¢(m,t) = 0.
using the method of separation of variables. (7]
d} Show that (7]

c {%} _ sU(z, s) — u(,0)

¢} Determine the long term behaviour of the partial differential equation, (7}

u+u=25, w0 =10

f) Write down the Laplacian in Cylindrical Polar Coordinates. [5]
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SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

a) Consider the partial differential equation

w+u=cet, ulz,0)=e®

i) Determine u (z,¢) using direct substitution. [
ii) Determine the long term behaviour of the partial differential equation. (3]
b) Find the general solution of [10]

(y -+ whttg + yuy =T — ¥,

using the method of characteristics.

QUESTION B3 [20 Marks]

a) Consider the Cauchy problem for the wave equation with —co <z <co and ¢ >0:  [10]
U — e = 0, u(z,0) —2 =0, 1wz, 0)=e"
Determine w (z, ).
b) Consider the partial differential equation
Uyy + Dlgy + 4y + Uy + 1wy = 0.

(i) Determine whether the given partial differential equation is hyperbolic, parabolic or
elliptic. 2]
(ii) Express the given partial differential equation in canonical form. 8]

QUESTION B4 {20 Marks]

a) Show that the Laplacian of the function u(2,y) in polar coordinates is given by (10]
o, 100 1%
or? - ordr  r?0g?
b) Consider the Dirichlet problem of a sphere [10]
g ( ,0u 1 a /(. ou\
7 (15 s (05) =
u(l,qﬁ)xqﬁ, Osﬁi)gﬂ-

Solve the corresponding Euler-Cauchy equation obtained after separation of variables.
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QUESTION B5 [20 Marks]

Consider the following equation i20]

U =Uge +1, O<z<m >0
uw(z,0) =sin(z), 0Lz <,
w(0,) =0, u(m ) =0,

Determine the general solution of the equation using the method of separation of variables.

QUESTION B8 [20 Marks]

Consider the wave equation 20]

16Uy + g == € Heos{ma), O0<az<l, 20,
w(@,0)=0, 0<z<l,
ut(ﬂ:‘,O) =0,
u(0,t) =0, u(1,t) =0

Using Laplace transform, show that the solution of the transformed equation is given by

cos(mz)

U, 9) = G0 + 167%)

END oF EXAMINATION PAPER
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