# UNIVERSITY OF ESWATINI



## MAIN EXAMINATION, 2019/2020

# BASS IV, B.Ed (Sec.) IV, B.Sc. IV, B.Eng. III

Title of Paper

: Partial Differential Equations

Course Number : MAT416/M415

Time Allowed

: Three (3) Hours

#### Instructions

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is COMPULSORY and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, B2 B6) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.
- 7. Indicate your program next to your student ID.

# Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

## COURSE NAME AND CODE: MAT416/M415 Partial Differential Equations

# SECTION A [40 Marks]: ANSWER ALL QUESTIONS

#### QUESTION A1 [40 Marks]

a) Consider the following equation with  $-\infty < x < \infty$  and t > 0:

$$u_{tt} - 9u_{xx} = 0$$
,  $u(x, 0) = 3$ ,  $u_t(x, 0) = 12$ .

Determine u(x,t).

[7]

b) Express the partial differential equation

$$u_t = u_{xx}$$
  $0 < x < 100$ ,  $t > 0$ ,  
 $u(x,0) = \sin(x)$ ,  $0 \le x \le 100$ ,  
 $u(0,t) = 100$ ,  $u(100,t) = 200$ ,

in the form such that the associated boundary conditions are homogeneous.

[7]

c) Write down the ordinary boundary value problems for X(x) and T(t) that must be solved in order to obtain the solution of the wave equation

$$\phi_{tt} = 9\phi_{xx}, \quad 0 < x < \pi, \quad t > 0,$$

$$\phi(x, 0) = 16\cos(x), \quad 0 \le x \le \pi,$$

$$\phi_t(x, 0) = 0,$$

$$\phi(0, t) = \phi(\pi, t) = 0.$$

using the method of separation of variables.

[7]

d) Show that

[7]

$$\mathcal{L}\left\{\frac{\partial u}{\partial t}\right\} = sU(x,s) - u(x,0)$$

e) Determine the long term behaviour of the partial differential equation,

[7]

$$u_t + u = 5, \quad u(x,0) = 10$$

f) Write down the Laplacian in Cylindrical Polar Coordinates.

5

#### SECTION B: ANSWER ANY THREE QUESTIONS

#### QUESTION B2 [20 Marks]

a) Consider the partial differential equation

$$u_t + u = e^t$$
,  $u(x,0) = e^{-x}$ 

i) Determine u(x,t) using direct substitution.

- [7]
- ii) Determine the long term behaviour of the partial differential equation.
- [3]

b) Find the general solution of

[10]

$$(y+u)u_x + yu_y = x - y,$$

using the method of characteristics.

### QUESTION B3 [20 Marks]

a) Consider the Cauchy problem for the wave equation with  $-\infty < x < \infty$  and t > 0: [10]

$$u_{tt} - 9u_{xx} = 0$$
,  $u(x, 0) - x = 0$ ,  $u_t(x, 0) = e^{-x}$ .

Determine u(x,t).

b) Consider the partial differential equation

$$u_{yy} + 5u_{xy} + 4u_{xx} + u_x + u_y = 0.$$

- (i) Determine whether the given partial differential equation is hyperbolic, parabolic or elliptic. [2]
- (ii) Express the given partial differential equation in canonical form.

#### QUESTION B4 [20 Marks]

a) Show that the Laplacian of the function u(x,y) in polar coordinates is given by [10]

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$$

b) Consider the Dirichlet problem of a sphere

[10]

[8]

$$\frac{\partial}{\partial r} \left( r^2 \frac{\partial u}{\partial r} \right) + \frac{1}{\sin(\phi)} \frac{\partial}{\partial \phi} \left( \sin(\phi) \frac{\partial u}{\partial \phi} \right) = 0,$$

$$u(1, \phi) = \phi, \quad 0 \le \phi \le \pi.$$

Solve the corresponding Euler-Cauchy equation obtained after separation of variables.

## QUESTION B5 [20 Marks]

Consider the following equation

[20]

$$u_t = u_{xx} + 1, \quad 0 < x < \pi, \quad t > 0,$$
  
 $u(x, 0) = \sin(x), \quad 0 \le x \le \pi,$   
 $u(0, t) = 0, \quad u(\pi, t) = 0,$ 

Determine the general solution of the equation using the method of separation of variables.

## QUESTION B6 [20 Marks]

Consider the wave equation

[20]

$$-16u_{xx} + u_{tt} = e^{-2t}\cos(\pi x), \quad 0 \le x \le 1, \quad t \ge 0,$$

$$u(x,0) = 0, \quad 0 \le x \le 1,$$

$$u_t(x,0) = 0,$$

$$u(0,t) = 0, \quad u(1,t) = 0.$$

Using Laplace transform, show that the solution of the transformed equation is given by

$$U(x,s) = \frac{\cos(\pi x)}{(s+2)(s^2+16\pi^2)}$$

END OF EXAMINATION PAPER\_\_\_

| f(t)                              | $\{f(t)\} = F(s)$              | f(t)                                                | f(t) = F(s)                       |
|-----------------------------------|--------------------------------|-----------------------------------------------------|-----------------------------------|
| 1                                 | $\frac{1}{s}$                  | $\frac{ae^{at} - be^{bt}}{a - b}$                   | $\frac{s}{(s-a)(s-b)}$            |
| $e^{at}f(t)$                      | F(s-a)                         | $te^{at}$                                           | $\frac{1}{(s-a)^2}$               |
| $\mathcal{U}(t-a)$                | $\frac{e^{-as}}{s}$            | $t^n e^{at}$                                        | $\frac{n!}{(s-a)^{n+1}}$          |
| $f(t-a)\mathcal{U}(t-a)$          | $e^{-as}F(s)$                  |                                                     | $(s-a)^{n-a}$                     |
| $\delta(t)$                       | 1                              | $e^{at}\sin kt$                                     | $\frac{k}{(s-a)^2 + k^2}$         |
| $\delta(t-t_0)$                   | $e^{-st_0}$                    | $e^{at}\cos kt$                                     | $\frac{s-a}{(s-a)^2+k^2}$         |
| $t^n f(t)$                        | $(-1)^n \frac{d^n F(s)}{ds^n}$ | $e^{at}\sinh kt$                                    | $\frac{k}{(s-a)^2 - k^2}$         |
| f'(t)                             | sF(s)-f(0)                     |                                                     | (0 2)                             |
| $f^n(t)$                          | $s^n F(s) - s^{(n-1)} f(0) -$  | $e^{at}\cosh kt$                                    | $\frac{s-a}{(s-a)^2-k^2}$         |
|                                   | $\cdots - f^{(n-1)}(0)$        | $t\sin kt$                                          | $\frac{2ks}{(s^2+k^2)^2}$         |
| $\int_0^t f(x)g(t-x)dx$           | F(s)G(s)                       | $t\cos kt$                                          | $\frac{s^2 - k^2}{(s^2 + k^2)^2}$ |
| $t^n \ (n=0,1,2,\dots)$           | n!                             |                                                     | ,                                 |
|                                   |                                | $t\sinh kt$                                         | $\frac{2ks}{(s^2-k^2)^2}$         |
| $t^x \ (x \ge -1 \in \mathbb{R})$ | <i>Ş</i> 1 - 2                 | $t \cosh kt$                                        | $\frac{s^2 + k^2}{(s^2 - k^2)^2}$ |
| $\sin kt$                         | $\frac{k}{s^2 + k^2}$          | sin at                                              | a                                 |
| $\cos kt$                         | $\frac{s}{s^2 + k^2}$          | $rac{\sin at}{t}$                                  | $\arctan \frac{a}{s}$             |
| $e^{at}$                          | $\frac{1}{s-a}$                | $\frac{1}{\sqrt{\pi t}}e^{-a^2/4t}$                 | $\frac{e^{-a\sqrt{s}}}{\sqrt{s}}$ |
| $\sinh kt$                        | $\frac{k}{s^2 - k^2}$          | $\frac{a}{2\sqrt{\pi t^3}}e^{-a^2/4t}$              | $e^{-a\sqrt{s}}$                  |
| $\cosh kt$                        | $\frac{s}{s^2 - k^2}$          | $\operatorname{erfc}\left(rac{a}{2\sqrt{t}} ight)$ | $\frac{e^{-a\sqrt{s}}}{s}$        |
| $e^{at} - e^{bt}$                 | 1                              |                                                     |                                   |