University of Eswatini

SUPPLEMENTARY/RE-SIT EXAMINATION 2020

BSc IV, B.Ed IV, BASS IV

Title of Paper

: Numerical Analysis II

Course Number

: MAT411/M411

Time Allowed

: Three (3) Hours

Instructions

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is **COMPULSORY** and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, B2 B6) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.
- 7. Indicate your program next to your student ID.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks]

A1 (a) Determine if the differential equation

$$y'(x) = (2x - 3)y(x) + 1, \quad 1 \le x \le 3, \ y(1) = 1$$

has a unique solution for $1 \le x \le 3$.

[5 Marks]

(b) Use the Runge-Kutta method (RK4) to solve the IVP

$$y' = 2ty, \quad y(0) = 2$$

for $0 \le t \le 0.2$ with h = 0.1 and compare the approximate solution against the exact solution $y(t) = 2e^{t^2}$

[9 Marks]

(c) Consider the multi-step method defined by the scheme

$$y_{i+1} + y_i - 2y_{i-1} = \frac{h}{2}(f_{i-1} + 5f_i)$$

Discuss the consistency, stability and convergence of this scheme.

[8 Marks]

(d) Show that the linear least squares approximation of $f(x) = \sqrt{x}$ on the interval [0,1] is $P_1(x) = \frac{4}{15} + \frac{4}{5}x$

[6 Marks]

(e) What are the two conditions that are necessary for an initial value problem

$$y'(t) = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha$$

to be well-posed?

[2 Marks]

(f) Derive the Euler method for solving initial value problems of the form

$$y'(t) = f(t, y(t)), \quad y(t_0) = y_0$$

where y_0 is a given initial condition

[4 Marks]

(g) Compute the local truncation error of the 2-step Adams-Moulton method

[6 Marks]

$$y_{i+1} = y_i + \frac{h}{12} (5f(t_{i+1}, y_{i+1}) + 8f(t_i, y_i) - f(t_{i-1}, y_{i-1}))$$

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

B2 (a) Suppose that w(x) is a weight function and $\{\phi_0, \phi_1, \dots, \phi_n\}$ is a set of linearly independent functions on [a, b].

If the set $\{\phi_0, \phi_1, \dots, \phi_n\}$ is orthogonal, show that the coefficients of the polynomial

$$P_n(x) = \sum_{k=0}^n c_k \phi_k(x)$$
 that minimizes the error

$$E(c_0, c_1, \dots, c_n) = \int_a^b w(x) \left(f(x) - \sum_{k=0}^n a_k \phi_k(x) \right)^2 dx$$
 (1)

are

$$c_j = \frac{1}{\alpha_j} \int_a^b w(x) f(x) \phi_j(x) \ dx, \tag{2}$$

where $\alpha_j = \int_a^b w(x) [\phi_j(x)]^2$ [6 Marks]

(b) Find the least squares quadratic function of the form $ax^2 + b$, which best fits the curve $y = \sqrt{2x+1}$ over the interval $0 \le x \le \frac{3}{2}$. [14 Marks]

QUESTION B3 [20 Marks]

B3 (a) Derive the backward in time and central in space (BTCS) implicit finite difference scheme for solving the heat equation [3 Marks]

$$u_t = u_{xx}$$

- (b) Use the Von-Neumann analysis to show that the implicit finite difference scheme for solving the heat equation is unconditionally stable. [8 Marks]
- (c) Use an $O(h^2)$ finite difference scheme to solve the following boundary-value problem using a step size h = 1/3 and compare the results against the exact solution $U(x) = -x^2 + 3x + 2$. [9 Marks]

$$U''(x) + 3xU'(x) - 3U(x) = -3x^2 - 8$$
, $U(0) = 2$, $U(1) = 4$

QUESTION B4 [20 Marks]

B4 (a) Use the method of undetermined coefficients to derive the 2-Step Adams-Moulton (implicit) method.

[10 Marks]

(b) Consider the initial value problem

$$x' = 2x + 3y + 5z$$
$$y' = 2x + y - 5z$$
$$z' = -5x - 5y + 3z$$

Ru

with initial conditions x(0) = -2, y(0) = 1, z(0) = 0 and exact solutions

$$x(t) = -\frac{3}{20}e^{-t} - \frac{25}{4}e^{3t} + \frac{22}{5}e^{4t}$$
$$y(t) = \frac{3}{20}e^{-t} + \frac{25}{4}e^{3t} - \frac{27}{5}e^{4t}$$
$$z(t) = -5e^{3t} + 5e^{4t}$$

Use the Euler's method with h=0.1 to find the solution of x(0.2), y(0.2), z(0.2) and compute the error at t=0.2.. [10 Marks]

QUESTION B5 [20 Marks]

B5 Apply finite differences with forward-difference approximation in time to solve the following PDE, subject to the given initial and boundary conditions

$$U_t - U_{xx} = \frac{tx}{4} + 1, \quad 0 < x < 1, \ t > 0$$

$$U(0, t) = 0.7, \quad U(1, t) = 0.8$$

$$U(x, 0) = -4x^2 + x + 4$$

Assume that the step sizes in x and t are h=0.2 and k=0.1 respectively, and compute the approximate solutions at t=0.1 and t=0.2.

[20 Marks]

85

QUESTION B6 [20 Marks]

B6 Let f(x) be a function defined as

$$f(x) = \begin{cases} x + \pi, & -\pi < x < 0 \\ \pi - x, & 0 < x < \pi. \end{cases}$$

(a) Show that the least squares trigonometric polynomial that approximates f(x) in the interval $-\pi < x < \pi$ is

$$S_n(x) = \frac{\pi}{2} - \sum_{k=1}^n \frac{2\left[(-1)^k - 1\right]}{\pi k^2} \cos kx$$
$$= \frac{\pi}{2} + \frac{4}{\pi} \left[1 + \frac{\cos 3x}{3^2} + \frac{\cos 5x}{5^2} + \frac{\cos 7x}{7^2} + \frac{\cos 9x}{9^2} + \dots \right]$$

for n = 1, 2, ...

[16 Marks]

(b) By giving an appropriate value to x, show that as $n \to \infty$

$$\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \dots$$

[4 Marks]