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. This paper consists of SIX (6) questions in TWO sections.
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in this section.
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(3) questions in this section.
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SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks]

Al (a) Show that the linear least squares approximation of
fl@) =a*+3z+2
on the interval [0,1] is Pi(z) = %1— + 4z [6 Marks]
(b) Determine if the differential equation
y(z) = Qz+3)y(z)+3, 1<2<3 y()=1

has a unique solution for 1 <z < 3. [5 Marks]

(¢) Use the method of undetermined coefficients to derive the 2-step Adams-Bashforth
explicit method. [6 Marks]

h
Yit1 = Y + "2"[3f(ti1yi) — flticr, %im1)]
(d) Cousider the following differential equation

V" £ 9Y =4 — 622

which is to be approximated using finite differences.

i Derive the finite difference scheme for the differential equation. [2 Marks]
ii. Find the local truncation error for the scheme. {5 Marks]

(e) 1. Use the 2-step Adams-Moulton method given by

h
Yier =Y+ T"'Z"[5.f(ti+1: Yir1) + 8 (i, vs) — fti1,9im1))]
to compute the approximate solution y(0.4) for the differential equation
y =2ty, y(0)=1, w(0.2)=1.040810770

[5 Marks]

ii. Find the error of the approximation in (i) given that the exact

solution is y(t) = ¥ [1 Mark]

(f) Consider the heat equation Uy = Ugs

i, Derive the finite difference scheme for solving the heat

equation using the forward difference in time and

central difference scheme in space (FTCS). [3 Marks]
ii. Use the von-Neumann analysis analysis to prove

that the BTCS scheme for solving the heat equation
is conditionally stable. [7 Marks]
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SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

B2 Use an O(h?) finite difference scheme to solve the following boundary-value problems using
a step size h = i and compare the results against the
exact solution U(z) = 42? + 3z + 2. [20 Marks]

4U"(z) — zU () + U(z) = 34— 42?, U(0)=2, U(1)=9

QUESTION B3 [20 Marks]

B3 Solve the discretized form of the Laplace equation [20 Marks]
Ugg + Uyy = 1

using step sizes Az = 1/3 and Ay = 1/2 for u(z,y) defined in the
domain 0 < z <1 and 0 <y <1 given the boundary conditions

u(z,0) = -2, u(z,1)=-1, u(0,y) =0, uw(l,y) =1

QUESTION B4 [20 Marks]

B4 (a) Derive the 3-step Adams-Bashforth explicit method using the Newton-Backward
difference formula. [12 Marks]

(b) Compute the local truncation error for the 3-step Adams-Bashforth [8 Marks]

QUESTION B5 [20 Marks]

B5 (a) Find the linear polynomial that best fits the following data in the sense
of least squares [10 Marks]

z |0 0.25 0.5 0.75 1
1y 1010015625 | 0.125 0.421875 | 1

(b) Given that the first Legendre polynomial is ¢o(z) = 1, use the
Gram-Schmidt process to find ¢1(z) and ¢s(z) for the
interval [0, 1] with weight function w(z) = 1. [10 Marks]
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QUESTION B6 [20 Marks]

B6 (a) Prove that the continuous least squares trigonometric polynomial 53 (z) for

-1 —wm<z<(,
f(m)ﬁ{ 1 0z

is  Safz) = dsmz [10 Marks]
(b) Use Taylor method of order 2 to solve the IVP
y'(t) =2y, y(0)=2
for 0 <t < 0.4 with h = 0.2 and compute the error against
the exact solution y(t) = 2e*" . [10 Marks]

END OF EXAMINATION PAPER




