University of Eswatini

73

Supplementary Examination, January 2020

B.Sc III, B.A.S.S III, B.Ed III

Title of Paper

: Real Analysis

Course Code

: MAT331/M331

Time Allowed

: Three (3) Hours

Instructions

1. This paper consists of TWO sections.

a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.

b. SECTION B: 60 MARKS

Answer ANY THREE questions.

Submit solutions to ONLY THREE questions in Section B.

- 2. Each question in Section B is worth 20%.
- 3. Show all your working.
- 4. Special requirements: None.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Question 1

- (a) (i.) Give an example of a set which is a neighbourhood of each of its points with the exception of two points. [3]
 - (ii.) Explain what is means to say that the set A is bounded above and define $\sup(A)$.
 - (iii.) Define uniform continuity of a function. [3]
- (b) (i) Prove that $x \le |x|$ and $-x \le |x|$. [3]
 - (ii.) Using the concept from subsequences show that $(-1)^n$ is a divergent sequence. [4]
 - (iii.) Prove that every finite set is bounded. [4]
 - (iv.) prove that an open interval is a neighbourhood of each of its points. [4]
 - (v.) Determine the $\lim \sup a_n$ and $\lim \inf a_n$ if $a_n = n \sin^2(\frac{\pi n}{2})$ [4]
 - (vi.) Prove that the sequence whose n^{th} term is $a_n = \sqrt{n+1} \sqrt{n} \text{ is monotone.}$ [4]
 - (c) Show that $f(x) = 3x^2 2x + 1$ is continuous at x = 5 [4]
 - (d) If $a_n = 2 + \frac{(-1)^n}{n^2}$, find the least positive integer m such that $|a_n 2| < \frac{1}{10^4} \quad \forall n > m.$ [4]

SECTION B: ANSWER ANY 3 QUESTIONS

75

Question 2

- (a) Show that a non-empty finite set is not a neighbourhood of any point. [6]
- (b) If A and B are bounded subsets of \Re and the set $A + B = \{x + y : x \in A \text{ and } y \in B, \text{ prove that } \sup(A + B) = \sup A + \sup B.$ [7]
- (c) Prove that supremum of a subset of a set if it exit is Uniqueness. [7]

Question 3

- (a) Prove (by ϵn definition) that $\lim_{n \to \infty} \frac{4n^3 + 3n}{n^3 6} = 4$. [10]
- (b) Prove that the sequence n! is not convergent. [10]

Question 4

- (a) If $a_n > 0 \ \forall n$ and $\lim_{n \to \infty} a_n \neq 0$, then prove that the series $\sum a_n$ diverges to ∞ . [8]
- (b) Discuss the convergence of $1 + \frac{2!}{2^2} + \frac{3!}{3^3} + \frac{4!}{4^4} + \cdots$ [6]
- (c) Test the convergence of the series $\sum \left(\frac{n}{n+1}\right)^{n^2}$ or $\sum \left(1+\frac{1}{n}\right)^{-n^2}$. [6]

Question 5

76

- (a) Discuss the continuity of the function f(x) = [x], (greatest integer function), at the point x = 1. If it is discontinuous at x = 1 what type of discontinuity is it?
- (b) Show that

$$f(x) = \begin{cases} x^2 - 1 & \text{when } x \ge 1\\ 1 - x & \text{when } x < 1 \end{cases}$$

has no derivative at x = 1.

[10]

Question 6

- (a) Show that the function defined by $f(x) = x^2$ is uniformly continuous on [-2, 2].
- (b) Verify $L(f, \Delta) \leq U(f, \Delta)$, (Lower and upper sum), using the following: $f(x) = x^2$, [0, 1] and partition $\Delta = \{0, \frac{1}{2}, 1\}$. [10]

End of Examination Paper