University of Eswatini

Final Examination, December 2019

B.Sc III, B.A.S.S III, B.Ed III

Title of Paper

: Real Analysis

Course Code

: MAT331/M331

Time Allowed

: Three (3) Hours

Instructions

1. This paper consists of TWO sections.

a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.

b. SECTION B: 60 MARKS

Answer ANY THREE questions.

Submit solutions to ONLY THREE questions in Section B.

- 2. Each question in Section B is worth 20%.
- 3. Show all your working.
- 4. Special requirements: None.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A: ANSWER ALL QUESTIONS

Question 1

- (a) Define the following
 - (i) Let $S \subseteq \Re$ when do we say that S is bounded.
- [2]

[2]

- (ii) Cauchy sequence.
- (iii) Uniformly continuous function. [2]
- (b) (i) Prove that $|x| = max\{x, -x\}$. [3]
 - (ii) Evaluate $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+1}$. [3]
 - (iii) The existence of the "inf" and the "sup" is an axiom of the real number system. It is not necessarily true that in any number system, a set that is bounded above has the least upper bound. Is this this statement true? Justify your answer.
 - (iv) TRUE OR FALSE: The superimum (if it exists) of a set $S \subseteq \Re$, belong to S. Explain your answer. [4]
 - (v) Verify that the sequence $a_n = \frac{1}{n^2}, n \ge 1$ is monotone non-decreasing, monotone non-increasing or not monotone. [4]
 - (vi) Using the definition of limit (i.e., $\epsilon \delta$), prove that $\lim_{x \to a} \frac{x^2 a^2}{x a} = 2a.$ [4]
 - (vii) Suppose $\sum a_n$ and $\sum b_n$ are positive term series with $a_n \leq b_n$ for all n. If $\sum b_n$ converges, show that $\sum a_n$ also converge. [4]
 - (viii) Test the series $\sum \frac{1}{2^n n}$ for convergence. [4]
 - (ix) Does the $\lim_{x\to 1} \sin \frac{1}{x-1}$ exist? If yes, find the limit. [4]

SECTION B: ANSWER ANY 3 QUESTIONS

Question 2

- (a) For any two real numbers x, y show that $|x y| \le |x| + |y|$. [4]
- (b) If A and B are bounded subsets of \Re , then prove that the set $A + B = \{x + y : x \in A \text{ and } y \in B\}$ is also bounded. [6]
- (c) Find the $\limsup a_n = (-1)^n + \frac{1}{n}$. [10]

Question 3

- (a) By using ϵn definition prove that $\lim \frac{n}{n+1} = 1$. [10]
- (b) Prove $\lim_{n \to \infty} \sqrt[n]{n} = 1$. [10]

Question 4

- (a) $1+a+\frac{a(a+1)}{1\cdot 2}+\frac{a(a+1)(a+2)}{1\cdot 2\cdot 3}+\cdots$ (a>0) test for convergence using Gauss test. [10]
- (b) Prove that a positive term series either converges or diverges to ∞ . [10]

Question 5

- (a) Show that $f(x) = \begin{cases} \frac{x^2 4}{x 2} & \text{if } x \neq 2 \\ 4 & \text{if } x = 2 \end{cases}$ is continuous at x = 2. [10]
- (b) Prove that if a function f is uniformly continuous on an interval I, then it is continuous on I.

Question 6

- (a) Prove that if a function is differentiable at a point then it is continuous at that point. [10]
- (b) From the definition of the Riemann integral show that $\int_1^2 (2x+3) = 6$. [10]

End of Examination Paper