University of Eswatini

RESIT EXAMINATION, 2019/2020

BASS III, B.Ed (Sec.) III, B.Sc. III, B.Eng. III

Title of Paper

: Complex Analysis

Course Number

: MAT313/M313

Time Allowed

: Three (3) Hours

Instructions

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is **COMPULSORY** and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, B2 B6) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.
- 7. Indicate your program next to your student ID.

Special Requirements: NONE

This examination paper should not be opened until permission has been given by the invigilator.

[5]

[5]

2

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks]

- a) Evaluate $\cos^{-1}(i)$ and leave your answer in the form a + ib.
- b) Find real constants a and b so that the function

$$f(z) = 3x - y + 5 + i(ax + by - 3)$$

is analytic. [5]

- c) Evaluate $\int_C \frac{\sin^2(z) 2z^3}{z^2 7z + 12} dz$ where C is given by |z| = 2. [5]
- d) Find the Maclaurin series of $\phi(z) = z \cos(z^2)$. [5]
- e) Express $\int_0^{2\pi} \frac{5d\theta}{5 4\cos(\theta)}$ as a contour integral around the unit circle |z| = 1. [5]
- f) Find the value of the residue at z=4 for $f(z)=\frac{2z}{(z-4)(z-3)^2(z-1)}$. [5]
- g) Express $z = \frac{1+3i}{-i+4}$ in the form z = a+ib. [5]
- h) Use the precise definition of a limit to show that

 $\lim_{z \to 2} (2iz - 2i) = 2i.$

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

- a) Consider the function $f(z) = \frac{1}{(z-1)(z-3)^2}$.
 - i) Locate and classify all singularities.
 - ii) Find the values of the residues at all the singularities inside |z|=2. [4]
 - iii) Hence evaluate $\int_C \frac{4}{(z-1)^3(z-3)^2} dz$, where C is the circle defined by |z|=2. [2]
- b) Using Cauchy's Residue Theorem, evaluate [12]

$$\int_0^{2\pi} \frac{d\theta}{10 - 6\cos(\theta)}.$$

60

QUESTION B3 [20 Marks]

a) Let
$$f(z) = u(x, y) + iv(x, y)$$
, $z_0 = x_0 + iy_0$, $w_0 = u_0 + iv_0$. Prove that if
$$\lim_{(x,y)\to(x_0,y_0)} u(x,y) = u_0$$
 [10]

and

$$\lim_{(x,y)\to(x_0,y_0)} v(x,y) = v_0.$$

then

$$\lim_{z \to z_0} f(z) = w_0$$

b) Show that $\alpha(x,y) = -e^{-x}\sin(y)$ is harmonic. Find the harmonic conjugate $\beta(x,y)$ and hence the analytic function $w(z) = \alpha(x,y) + i\beta(x,y)$. [10]

QUESTION B4 [20 Marks]

a) Evaluate
$$\int_C |z|^2 dz$$
 where C is parametrized by $x = t^2$, $y = \frac{1}{t}$ for $t \in [1, 2]$. [8]

b) Evaluate
$$\int_C \frac{1}{z^3 + 2iz^2} dz$$
 where C is $|z| = 1$. [4]

c) Evaluate
$$\int_C \frac{e^{z^2}}{(z-i)^3} dz$$
 where C is parametrized by $|z-i|=1$. [8]

QUESTION B5 [20 Marks]

a) Determine if the sequence
$$\left\{\frac{(ni+2)^2}{n^2i}\right\}$$
 for $n=1,2,\cdots$ converges or diverges. [4]

b) Determine whether the geometric series

$$\sum_{k=0}^{\infty} \left(1 - i\right)^k$$

is convergent or divergent.

[6]

c) Find the Laurent series that represents
$$f(z) = \frac{1}{z(z-1)}$$
 in the domain $|z| > 1$. [10]

QUESTION B6 [20 Marks]

a) i) Show that
$$\cos^{-1}(z) = -i \ln (z + i\sqrt{1 - z^2})$$
 [10]

ii) Hence show that
$$\frac{d}{dz}(\cos^{-1}(z)) = \frac{-1}{\sqrt{1-z^2}}$$
 [4]

b) Find the principal value of
$$z = 2i^{-i}$$
 [6]