University of Eswatini

Main Examination, 2019/2020

BASS III, B.Ed (Sec.) III, B.Sc. III, B.Eng. III

Title of Paper

: Complex Analysis

Course Number : MAT313

Time Allowed : Three (3) Hours

Instructions

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is COMPULSORY and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, B2 B6) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.
- 7. Indicate your program next to your student ID.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

PAGE 1

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks]

- a) Evaluate $\sin^{-1}(1)$ and leave your answer in the form a + ib. [5]
- b) Find real constants a and b so that the function

$$f(z) = 3x - y + 5 + i(ax + by - 3)$$

is analytic. [5]

- c) i) Evaluate $\int_C \frac{e^{\pi z} 3\sin^2(z) + 4z^3z^i}{z^2 7z + 12} dz$ where C is given by |z| = 2. [5]
 - ii) State Morera's theorem. [5]
- d) Find the Maclaurin series of $\Phi(z) = z^4 \sin(2z)$. [5]
- e) Express $\int_0^{2\pi} \frac{d\theta}{5 + 4\sin(\theta)}$ as a contour integral around the unit circle |z| = 1. [5]
- f) Find the value of the residue at z=3 for $f(z)=\frac{2z}{(z-4)^2(z-3)}$. [5]
- g) Express $z = \frac{(1 i\sqrt{3})^5}{(i-1)^{10}}$ in the form z = a + ib. [5]

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

- a) Consider the function $f(z) = \frac{1}{(z-1)^2(z-3)}$.
 - i) Locate and classify all singularities. [2]
 - ii) Find the value of the residue at each singularity. [6]
 - iii) Hence evaluate $\int_C \frac{4}{(z-1)^2(z-3)} dz$, where C is the rectangle defined by x=0, x=4, y=-1, y=1.
- b) Using Cauchy's Residue Theorem, evaluate

$$\int_0^{2\pi} \frac{\cos(\theta)d\theta}{5 - 4\cos(\theta)}.$$

QUESTION B3 [20 Marks]

- a) Prove that when a limit of a function $\phi(z)$ exists at a point z_0 , it is unique. [8]
- b) Consider the function $\alpha(x,y) = (x-y)(x+y)$.
 - i) Show that $\alpha(x, y)$ is harmonic. [3]
 - ii) Find the harmonic conjugate $\beta(x, y)$. [7]
 - iii) Hence or otherwise, find the analytic function $w(z) = \alpha(x, y) + i\beta(x, y)$ such that w(i) = 1.

QUESTION B4 [20 Marks]

a) Evaluate
$$\int_C (3\overline{z} - 2z)dz$$
 where C is parametrized by $z = it^2$ for $t \in [0, 1]$. [7]

b) Evaluate
$$\int_C \frac{5z+7}{z^2+2z-3} dz$$
 where C is given by $|z-2|=2$. [5]

c) Evaluate
$$\int_C \frac{z+1}{z^4+2iz^3} dz$$
 where C is parametrized by $z=e^{i\theta}$ for $\theta \in [0, 2\pi]$. [8]

QUESTION B5 [20 Marks]

a) Determine if the sequence
$$\left\{\frac{3ni+2}{n(1+i)}\right\}$$
 for $n=1,2,\cdots$ converges or diverges. [4]

b) Find the Maclaurin series that represents the function $\Gamma(z)=z^3\cos(3z)$. [6]

c) Find the Laurent series that represents the function $f(z) = \frac{1}{(z-2)(z-3)}$ in the domain

$$2<\left\vert z\right\vert <3.$$

[10]

QUESTION B6 [20 Marks]

a) i) Show that
$$\tanh^{-1}(z) = \frac{1}{2} \ln \left(\frac{1+z}{1-z} \right)$$
 [10]

ii) Hence show that
$$\frac{d}{dz} \left(\tanh^{-1}(z) \right) = \frac{1}{1-z^2}$$
 [4]

b) Find the principal value of
$$z=i^{\frac{i}{\pi}}$$