University of Eswatini

MAIN EXAMINATION, 2019/2020

BASS, B.Ed (Sec.), B.Sc.

Title of Paper

: Foundations of Mathematics

Course Number : MAT231

Time Allowed

: Three (3) Hours

Instructions

- 1. This paper consists of SEVEN (7) questions in TWO sections.
- 2. Section A is COMPULSORY and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, A2, B2, ..., B6) on a new page and clearly indicate the question number at the top of the page.
- You can answer questions in any order.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section A (Answer ALL Questions in this Section)

Question A1 [20 Marks]

(a) Give clear definitions of the following terms:

(i) A relation
$$R: A \to B$$
. (2)

(ii) A function
$$f: A \to B$$
. (2)

(b) Let $X = \{1, 2, 3, 4\}$. For each relation below, determine whether or not it is a function from X into X. Give reasons for your answers.

(i)
$$f = \{(2,3), (1,4), (2,1), (3,2), (4,4)\}$$

(ii)
$$g = \{(3,1), (4,2), (1,1)\}$$
 (2)

(iii)
$$h = \{(2,1), (3,4), (1,4), (4,4)\}$$
 (2)

- (c) (i) Define an injection $f: A \to B$. (2)
 - (ii) Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by f(x) = 2x 3 is an injection. (2)
- (d) Define the relation \sim on \mathbb{Z} as follows: For $m, n \in \mathbb{Z}$, $m \sim n$ if m n is divisible by 3. Prove that \sim is an equivalence relation on \mathbb{Z} .

Question A2 [20 Marks]

- (a) Let *p* and *q* be propositions. Write down the valid arguments *modus ponens* and *modus tollens*. (4)
- (b) Construct a truth table for the proposition $p \to (\neg p \lor q)$ (4)
- (c) Use truth tables to prove the following: $\neg(p \land q) \equiv \neg p \lor \neg q$. (4)
- (d) Let $D = \{1,2,3\}$ be the domain of discourse. Determine the truth values of the propositions

(i)
$$\forall x \forall y, x^2 + y^2 < 12$$
 (ii) $\exists x \forall y, x^2 < y + 1$ (iii) $\forall x \exists y, x^2 + y^2 < 12$ (2,3,3)

PAGE 3

Question B5 [20 Marks]

(a) Find the domain of each function below.

(i)
$$f(x) = \frac{1}{x^2 - 4}$$

(ii)
$$f(x) = \sqrt{x^2 - 4}$$

(b) consider the functions f, g, and h defined in the picture below.

Determine which functions are (i) injective, (ii) surjective, and (iii) invertible.

- (c) Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 2x + 1 and $g(x) = x^2 2$. Find $(f \circ g)(x)$.
- (d) Let $f: A \to B$ and $g: B \to C$ be surjective functions. Prove that $g \circ f: A \to C$ also a surjective function.

Question B6 [20 Marks]

- (a) Prove: For $a, b, c \in \mathbb{Z}$ with $b \neq 0$ and $c \neq 0$, if $b \mid a$ and $c \mid b$, then $c \mid a$.
- (b) Prove: For an integer m, if m^2 is odd, then m is odd.
- (c) Prove: For any integer n, $n^2 + n$ is even.
- (d) True or False? (If true, give a proof. If false, explain why.): *For all real numbers* $x > \frac{1}{x}$.

PAGE 4

Question B7 [20 Marks]

(a) Use mathematical induction to prove:

For all integers $n \ge 1$, $2^{2n} - 1$ is divisible by 3.

(b) Use strong induction to prove:

For all integers $n \ge 2$, either n is prime or n can be written as a product of prime numbers.

END OF EXAMINATION

Section B (Answer any three (3) Questions in this Section)

Question B3 [20 Marks]

- (a) Let $U = \{1, 2, 3, ..., 9\}$ and let $E = \{2, 4, 6, 8\}$, $O = \{1, 3, 5, 7, 9\}$, and $P = \{2, 3, 5, 7\}$ Find the following sets.
 - (i) $E \cap O$
- (ii) $O \cap P$ (iii) $O \setminus P$
- (iv) O^c
- (b) Let $A = \{ \triangle, \square, \bigcirc \}$. Write down $\mathcal{P}(A)$, the *power set* of the set A.
- (c) Let *A* be any set and let \emptyset be the emptyset. Show that $\emptyset \subseteq A$.
- (d) Prove: If $A \subseteq B$, then $A \cap B = A$.

Question B4 [20 Marks]

(a) Use truth tables to show that the following argument is valid.

$$p \to \neg q$$

$$r \to q$$

$$\vdots \quad \neg p$$

- (b) Prove without truth tables: $\neg(p \lor q) \lor (\neg p \land q) \equiv \neg p$.
- (c) Negate each of the following statements.
 - (i) All UNESWA students live on campus.
 - (ii) The is a course such that for every UNESWA student, the student takes the course.
 - (iii) For every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that if $n \ge N$, then $|x_n L| < \varepsilon$.
 - (iv) There is a real number x such that for all real numbers y, x < y.