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Instructions

1. This paper consists of SIX (6) questions in TWO sections.

2 Section A is COMPULSORY and is worth 40%. Answer ALL questions

in this section.

3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE

(3) questions in this section.

4. Show all your working.

5. Start each new major question (Al, B2 — B6) on a new page and clearly

indicate the question number at the top of the page.
6. You can answer questions in any order.
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THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS
BEEN GIVEN BY THE INVIGILATOR.




UNESWA JANUARY EXAMINATIONS ACADEMIC YEAR 2018/2020
COURSE NAME AND CODE: MAT221 Linear Algebra PAGE 1
+32

SECTION A [40 Marks: ANSWER ALL QUESTIONS

QUESTION Al [40 Marks]

a) i) Determine whether the vectors 4y = (0,1,~2), % = (—3,0,1), and 73 = (1,2,—1} are

linearly independent or linearly dependent. [4]
ii) Let V,.,, be the vector space of n X n matrices. Determine whether the transformation
T(A) = AT — 3A is linear transformation or not. 4]
1 6 1 -4
b) i) Find |A| and |347], given that A 0T 3]
i) Fi an iven that A =
. 6 0 0 —2 8 |
0 0 0 &
ii) Hence determine if the matrix A is invertible or not. [2]
-3 0 0
¢) 1) Determine the characteristic polynomial of the matrix A= 1 3 1 0. [2]
—4 0 =3
ii) Hence find the corresponding eigenvalues. (3]
= ___1 =
d) 1) Express C = { 0 3} as a product of elementary matrices. [6]
-1 0 0
ii) Find 247, where A= | 0 ~2 0}. [4]
0 0 2
e} Solve the following system, using Gauss-Jordan elimination. [6]
2.’.131 + 3y = 18
3.?31 + 6.’122 =9
f)} Verify the Cayley-Hamilton theorem for the matrix 6]
b
A=
0 -3

SECTION B: ANSWER ANY THREFE QUESTIONS

QUESTION B2 [20 Marks]

a} Determine whether the vectors vy = (8,1,—3), va = (4,0,1) are linearly dependent or
linearly independent in R [10]

b} Do the vectors vi = (1,2,1), v»=(2,9,0), vz = (3,3,4), form a basis for R*? [10]
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QUESTION B3 [20 Marks]

a) Solve the system of equations [12]

Ty — 2.’1)2 + 5.’1,'3 = —2
41[:1 - 5.’L’2 + 821’)3 =0
-3z + 32y — 31 = 1.

b) Prove that a square matrix A is invertible if and only if & = 0 is not an cigenvalue of A. 18]

QUESTION B4 [20 Marks]

a) Suppose that the matrices 4 and B are both symmetric with the same size, show that A+ B

is symmetric, [7]
-2 0 0
b) Find a matrix P that diagonalizes the matrix A= | 9 1 0 | and hence write down an
8§ 6 -3
expression in terms of the matrix P that can be used to evaluate AS. [13]
QUESTION B5 [20 Marks) >
- 00 -2
a) Find bases for the eigenspaces of the matrix A= |1 2 1 [10]
10 3
200
b) Consider the matrix A= {0 1 0]. Verify Cayley-Hamilton theorem. [10]
00 3

QUESTION B6 [20 Marks]

a} Define P : C* — C? by describing the output of the function for a generic input with the
P

formula
T
[-1' 1+ 3533]
P Ty e .
T — 5(1’32
T3
Determine whether the transformation is linear or not. [12]

b) Prove that If 7: V — W is a linear transformation, then:
i) 7(0) =0 4]
i) T(—u) = =T(u) [4]

END oF EXAMINATION PAPER




