University of Eswatini

RESIT EXAMINATION, 2019/2020

B.A.S.S. II, B.Ed (Sec.) II, B.Sc. II, B.Eng. II

Title of Paper : Linear Algebra

Course Number : MAT221

Time Allowed : Three (3) Hours

Instructions

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is **COMPULSORY** and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, B2 B6) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.
- 7. Indicate your program next to your student ID.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

43

[6]

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks]

- a) i) Determine whether the vectors $\bar{v}_1 = (0, 1, -2)$, $\bar{v}_2 = (-3, 0, 1)$, and $\bar{v}_3 = (1, 2, -1)$ are linearly independent or linearly dependent. [4]
 - ii) Let V_{nn} be the vector space of $n \times n$ matrices. Determine whether the transformation $T(A) = A^T 3A$ is linear transformation or not. [4]
- b) i) Find |A| and $|3A^T|$, given that $A = \begin{bmatrix} 1 & 6 & 1 & -4 \\ 0 & -4 & 0 & 7 \\ 0 & 0 & -2 & 8 \\ 0 & 0 & 0 & 5 \end{bmatrix}$. [3]
 - ii) Hence determine if the matrix A is invertible or not. [2]
- c) i) Determine the characteristic polynomial of the matrix $A = \begin{bmatrix} -3 & 0 & 0 \\ 3 & 1 & 0 \\ -4 & 0 & -3 \end{bmatrix}$. [2]
 - ii) Hence find the corresponding eigenvalues. [3]
- d) i) Express $C = \begin{bmatrix} -1 & 1 \\ 0 & 3 \end{bmatrix}$ as a product of elementary matrices. [6]
 - ii) Find $2A^{-7}$, where $A = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$. [4]
- e) Solve the following system, using Gauss-Jordan elimination. [6]

$$2x_1 + x_2 = 18$$
$$3x_1 + 6x_2 = 9$$

f) Verify the Cayley-Hamilton theorem for the matrix

 $A = \begin{bmatrix} 1 & 4 \\ 0 & -3 \end{bmatrix}$

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

- a) Determine whether the vectors $\mathbf{v}_1 = (8, 1, -3)$, $\mathbf{v}_2 = (4, 0, 1)$ are linearly dependent or linearly independent in \mathbb{R}^3 . [10]
- b) Do the vectors $\mathbf{v}_1 = (1, 2, 1)$, $\mathbf{v}_2 = (2, 9, 0)$, $\mathbf{v}_3 = (3, 3, 4)$, form a basis for \mathbb{R}^3 ? [10]

PAGE 2

QUESTION B3 [20 Marks]

a) Solve the system of equations

[12]

$$x_1 - 2x_2 + 5x_3 = -2$$

$$4x_1 - 5x_2 + 8x_3 = 0$$

$$-3x_1 + 3x_2 - 3x_3 = 1.$$

b) Prove that a square matrix A is invertible if and only if $\kappa = 0$ is not an eigenvalue of A.[8]

QUESTION B4 [20 Marks]

- a) Suppose that the matrices A and B are both symmetric with the same size, show that A+B is symmetric. [7]
- b) Find a matrix P that diagonalizes the matrix $A = \begin{bmatrix} -2 & 0 & 0 \\ 9 & 1 & 0 \\ 8 & 6 & -3 \end{bmatrix}$ and hence write down an expression in terms of the matrix P that can be used to evaluate A^6 . [13]

QUESTION B5 [20 Marks]

a) Find bases for the eigenspaces of the matrix
$$A = \begin{bmatrix} 0 & 0 & -2 \\ 1 & 2 & 1 \\ 1 & 0 & 3 \end{bmatrix}$$
. [10]

b) Consider the matrix
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
. Verify Cayley-Hamilton theorem. [10]

QUESTION B6 [20 Marks]

a) Define $P:\mathbb{C}^3\to\mathbb{C}^2$ by describing the output of the function for a generic input with the formula

$$P\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 3x_3 \\ x_1 - 5x_2 \end{bmatrix}$$

Determine whether the transformation is linear or not.

[12]

b) Prove that If $T: V \to W$ is a linear transformation, then:

i)
$$T(0) = 0$$

ii)
$$T(-\mathbf{u}) = -T(\mathbf{u})$$
 [4]