University of Eswatini

Main Examination, 2019/2020

B.A.S.S. II, B.Ed (Sec.) II, B.Sc. II, B.Eng. II

Title of Paper

: Linear Algebra

Course Number : MAT221

Time Allowed : Three (3) Hours

Instructions

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is COMPULSORY and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, B2 B6) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.
- 7. Indicate your program next to your student ID.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks]

a) Suppose that $S = \{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ are vectors in \mathbb{R}^2 . Determine whether S is linearly dependent or not.

b) Let
$$A = \begin{bmatrix} 2 & 4 & 4 & 6 \\ 0 & -1 & 1 & 9 \\ 0 & 0 & 1 & 5 \\ 0 & 0 & 0 & -2 \end{bmatrix}$$
. Find the eigenvalues of A^6 . [4]

c) Calculate
$$A^3$$
 using the Cayley-Hamilton theorem for $A = \begin{bmatrix} 1 & 0 \\ 4 & -1 \end{bmatrix}$. [4]

- d) Let V_{nn} be the vector space of $n \times n$ matrices. Determine whether the transformation $T(A) = \det(A)$ is linear or not. [4]
- e) Suppose that the matrix F is a result of exchanging two rows of matrix G. Given that $|G| = -\pi$, find |F| and |FG|.

f) Let
$$F = \begin{bmatrix} 1 & 0 \\ 4 & -1 \end{bmatrix}$$
 and $p(x) = 4 - 3x$. Find $p(F)$. [4]

g) Given that
$$B = \begin{bmatrix} 2 & 4 \\ -1 & -1 \end{bmatrix}$$
. Find B^{-1} using elementary row operations. [4]

h) Show that if A is an invertible symmetric matrix, then A^{-1} is symmetric. [4]

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

a) Find |A| where

$$A = \begin{bmatrix} 2 & 4 & 4 & 6 \\ -1 & -1 & 1 & 9 \\ -2 & 2 & 1 & 5 \\ -4 & 1 & 2 & 5 \end{bmatrix}.$$

b) Let α be any real nonzero constant and let

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ \alpha a_{21} & \alpha a_{22} & \alpha a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Using the cofactor expansion notation on the second row, show that $|B| = \alpha |A|$.

QUESTION B3 [20 Marks]

- a) Let $P = \{\mathbf{p}_1, \mathbf{p}_2, \cdots, \mathbf{p}_k\}$ be a set of vectors in \mathbb{R}^n . Prove that if k > n, then P is linearly dependent.
- b) Determine whether the vectors $\mathbf{v}_1 = (0, 3, 1, -1)$, $\mathbf{v}_2 = (6, 0, 5, 1)$, $\mathbf{v}_3 = (4, -7, 1, 3)$, are linearly dependent or linearly independent in \mathbb{R}^4 . If they are linearly dependent, express \mathbf{v}_3 as a linear combination of the other vectors.

QUESTION B4 [20 Marks]

- a) Prove that a square matrix A is invertible if and only if $\sigma = 0$ is not an eigenvalue of A.[8]
- b) Find a matrix P that diagonalizes the matrix $A = \begin{bmatrix} 2 & 0 & 0 \\ 3 & 4 & 0 \\ 7 & 6 & -1 \end{bmatrix}$ and hence write down an expression in terms of the matrix P that can be used to evaluate A^{10} .

QUESTION B5 [20 Marks]

- a) Prove that every system of linear equations has no solutions, or exactly one solution or has infinitely many solutions. [10]
- b) i) Show that a transpose of a symmetric matrix C is symmetric. [4]

ii) Find
$$A^{-5}$$
 given that $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. [6]

QUESTION B6 [20 Marks]

a) Solve the system of linear equations

[10]

$$3x_1 + x_2 + x_3 + x_4 = 0$$

$$5x_1 - x_2 + x_3 - x_4 = 0.$$

b) Define $T:\mathbb{C}^3\to\mathbb{C}^2$ by describing the output of the function for a generic input with the formula

$$T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 + x_3 \\ -4x_2 \end{bmatrix}$$

Determine whether the transformation is linear or not.

[10]