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6.
7.

This paper consists of SIX (6) questions in TWO sections,

Section A is COMPULSORY and is worth 40%. Answer ALL questions
in this section.

Section B consists of FIVE questions, each worth 20%. Answer ANY THREE
(3) questions in this section.

. Show all your working.

Start each new major question (Al, B2 — B6) on a new page and clearly
indicate the question number at the top of the page.

You can answer questions in any order,

Indicate your program next to your student ID.
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UNESWA DECEMBER EXAMINATIONS ACADEMIC YEAR 2(}19/2020
COURSE NAME AND CODE: MAT221Linear Algebra PAGE 1

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [0 Marks]

a) Suppose that S = {v}, 3, 03} are vectors in R2. Determine whether S is linearly dependent

or not. [4]
2 4 4 6
0 -1 1 9 _ )
b) Let A = 0 0 1 . F'ind the eigenvalues of AS. [4]
0 0 0 -2
. . 1 0
c) Calculate A® using the Cayley-Hamilton theorem for A = 4 1l [4]
d) Let Vi be the vector space of n x n matrices, Determine whether the transformation
T(A) = det{A) is linear or not. 4]
e) Suppose that the matrix F is a result of exchanging two rows of matrix G. Civen that
|Gl = —m, find |F| and |FG]. [4]
. I 0 :
f) Let F'= [4 J and p(z) = 4 — 3z. Find p(#). [4]
: 24 . \ : ‘
g) Given that B = [ ! 1:'. Find B~ using elementary row operations. [4]
h) Show that, if A is an invertible symmetric matrix, then A1 is symmetric. [4]

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks)]

a) Find |A} where {15]
2 4 4 6
-1 =119
=12 2 15
-4 1 25

b) Let a be any real nonzero constant and let

11 Gz Qi3 Q) d1g a3
A= lag1 aoy ao and B = |wag ey cao
31 O3z Q33 a3y Q3n  d33.

Using the cofactor expansion notation on the second row, show that |B| — a|A|. [5]
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QUESTION B3 [20 Marks|

a) Let P = {p,,py,-- p,} be a set of vectors in R”. Prove that if & > n, then P is linearly
dependent. (8]

b) Determine whether the vectors v; = (0,3, 1, =1}, va=(6,0,51), vz = (4,-7, 1, 3), are
linearly dependent or linearly independent in RY, If they are linearly dependent, express vy
as a linear combination of the other vectors, [12]

QUESTION B4 [20 Marks|

a) Prove that a square matrix A is invertible if and only if ¢ =0 is not an eigenvalue of A.[8]

2.0 0

b) Find a matrix P that diagonalizes the matrix A = [3 4 0 | and hence write down an
76 -1

expression in terms of the matrix P that can be used to evaluate A, [12]

QUESTION Bb5 [20 Marks]

a) Prove that every system of linear equations has no solutions, or exactly one solution or has

infinitely many solutions. (10]
b) i) Show that a franspose of a symmetric matrix C is syminetric. [4]
2 0 0
ii) Find A5 given that A= [0 2 0], ' 6]
0 01

QUESTION BS6 [20 Marks]

a) Solve the system of linear equations [10]

3$1+(E2+$3+:L'4:0
91 — g + g — 24 = 0.

b) Define T : C* — C? by describing the output of the function for a generic input with the

formula
T 9%, -+
T -+ @
T Tof-§ = ': ! 3:]
*4."52
T3
Determine whether the transformation is linear or not. [10]

END OF EXAMINATION PAPER




