University of Eswatini

MAIN EXAMINATION, 2019/2020

B.Ed (Pri.), (Sec.) II; B.Sc II

Title of Paper : Mathematics for Scientists

Course Number : MAT215

Time Allowed : Three (3) Hours

Instructions

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is **COMPULSORY** and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, B2 B6) on a new page and clearly indicate the question number at the top of the page.

PAGE 2

- 6. You can answer questions in any order.
- 7. Indicate your program next to your student ID.

Special Requirements: NONE

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks]

A1 (a) Which of the following matrices is/are in reduced row echelon form?

$$A = \begin{pmatrix} 1 & 0 & 3 & 3 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad C = \begin{pmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

[3 marks]

(b) Find the area of the triangle ABC with vertices A(7, -8), B(-2, -6) and C(1, 5).

[4 marks]

(c) Show that the vectors p = (3, -2, 0), q = (2, -4, -2) and r = (1, 2, 2) are coplanar.

[4 marks]

(d) State Mean Valued Theorem.

[3 marks]

(e) If $f(x) = x^3 - 7x + 6$. Find the number c that satisfies the condition of the Mean Valued Theorem for f(x) on [1, 3].

[4 marks]

(f) If $f(x,y) = xy \cos x$. Find $f_x(\frac{\pi}{2},1)$.

[3 marks]

(g) Find the critical point(s) of $f(x,y) = x^3 + y^2 - 3x - y$.

[4 marks]

(h) Evaluate $\int_1^2 \int_0^x (2xy+3)dydx$.

[5 marks]

(i) Let y(t) be the unknown. Identify the order, degree and linearity of the following equations.

i. $3y' + (t+4)y = t^2 + y''$, where $y' = \frac{dy}{dt}$.

[1,1,1 marks]

ii. $(y^{(4)})^2 + \sqrt{t}(y''')^4 + \cos t = e^y$, where $y^{(4)} = \frac{d^4y}{dt^4}$ and $y''' = \frac{d^3y}{dt^3}$.

[1,1,1 marks]

(j) If $f(x,y) = x^2y^2 + xy^3$. Show that the functions f(x,y) is homogeneous and find the degree. [4 marks]

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

B2 (a) i. Find the reduced row echelon form of the matrix below:

$$\left(\begin{array}{ccc} 1 & -2 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{array}\right).$$

[5 marks]

ii. The row echelon form of the augmented matrix of a linear system is given by;

$$\left(\begin{array}{ccc|c} 1 & 2 & 3 & 5 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{array}\right).$$

The linear system is in the variable x, y and z.

Find the solution for x, y and z.

[5 marks]

(b) If the cosine of the angle between u=i+2j+2k and v=i-4j+mk is $\frac{1}{3}$, find the value of the parameter m. [10 marks]

QUESTION B3 [20 Marks]

B3 (a) State Rolle's Theorem.

[3 marks]

(b) Let $g(x) = x^3 + 2x^2 - x - 1$. Find a number c in (-2, 1) such that the tangent to the graph of y = g(x) is horizontal at x = c.

[6 marks]

(c) Find the first four terms of the Taylor series expansion of $\sin x$ about x = 0.

[6 marks]

Use this series to evaluate $\lim_{x\to 0} \frac{\sin x - x}{x^3}$.

[5 marks]

QUESTION B4 [20 Marks]

B4 (a) A sporting goods manufacturer produces regulation soccer balls at two plants.

The costs of producing x_1 units at Location 1 and x_2 units at Location 2

are given by

$$C_1(x_1) = 0.02x_1^2 + 4x_1 + 500$$

PAGE 3

and

$$C_2(x_2) = 0.05x_2^2 + 4x_2 + 275$$

respectively. If the product sells for E50 per unit, then the profit function for the product is given by

$$P(x_1, x_2) = 50(x_1 + x_2) - C_1(x_1) - C_2(x_2).$$

Evaluate P(250, 150).

[8 marks]

(b) If $f(x, y, z) = 3x^2y - 5xyz - 10yz^2$, find $f_{xy}(1, 1, 1)$.

[4 marks]

(c) If $z = \sin u + \cos v$, where $u = x^2y$ and v = 2x + 3y. By using chain rule, find $\frac{\partial^2 z}{\partial y^2}$.

[8 marks]

QUESTION B5 [20 Marks]

B5 A company makes two substitute products whose demand functions are given by

$$x_1 = 200(p_2 - p_1)$$
 and $x_2 = 500 + 100p_1 - 180p_2$

where p_1 and p_2 are the prices per unit (in Emalangeni) and x_1 and x_2 are numbers of units sold. The costs of producing the two products are E0.50 and E0.75 per unit respectively. Find the prices that will yield a maximum profit.

[20 marks]

QUESTION B6 [20 Marks]

B6 (a) Find the solution of $\frac{dy}{dx} = \frac{3x^2 + 4x + 2}{2(y-1)}$, y(0) = -1.

(b) Consider the differential equation y'' - 5y' + 6y = 0, where $y' = \frac{dy}{dx}$.

i. Find the general solution.

[6 marks] [6 marks]

[8 marks]

ii. If y(0) = -1, y'(0) = 5, find the particular solution.

END OF EXAMINATION