University of Eswatini

Final Examination, December 2019

B.A.S.S., B.Sc, B.Eng, B.Ed

Title of Paper

: Calculus I

Course Number

: MAT211

Time Allowed

: Three (3) Hours

Instructions

1. This paper consists of TWO sections.

a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.

b. SECTION B: 60 MARKS

Answer ANY THREE questions.

Submit solutions to ONLY THREE questions in Section B.

- 2. Begin each major question (A1, B2, etc) on a new page.
- 3. Each question in Section B is worth 20%.
- 4. Show all your working.
- 5. Non programmable calculators may be used (unless otherwise stated).
- 6. Special requirements: None.
- 7. Indicate your program next to your student ID number.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section A: Answer All Questions

A1.

- (a) i. Consider the function $f(x) = 2x + \frac{1}{x}$. Find and classify the critical points of f(x).
 - ii. Identify the open intervals on which the function $h(x) = x^2 2x 8$ is increasing or decreasing. [6]
 - iii. For the function $f(x) = 3x x^2$, $x \in [0, 3]$, determine whether the Rolle's Theorem can be applied to f(x). If yes, find all values of c in the open interval (a, b) such that f'(c) = 0. If not, explain why.
 - iv. State L'Hopital's Rule. [3]
 - v. Use L'Hopital's Rule to evaluate $\lim_{x\to\infty} (\ln x)^{\frac{1}{x}}$. [5]
- (b) i. The region bounded by the curves $y = \sqrt{x}$ and $y = x^2$ is rotated about the line x = -2 to generate a solid of revolution. Use two different methods to set up, but do not evaluate, the integral for the volume of the solid. [4]
 - ii. Find the area of the region enclosed by the curves, $y = x^2$, x + y = 2 and the x-axis. [5]
- (c) i. List the first five terms of the sequence $a_n = (-1)^{(n+1)} \left(\frac{2}{n}\right)$. [3]
 - ii. Find the limit of the sequence $a_n = \frac{2n}{\sqrt{n^2 + 1}}$. [2]
 - iii. Find the sum of the geometric series $\sum_{n=0}^{\infty} \frac{3}{2^n}$. [2]

Section B: Answer Three(3) Questions Only

B2.

Consider the function $f(x) = \frac{x^2}{x-1}$.

- (a) Identify the domain of f(x). [1]
- (b) Find and classify all critical points of f. [4]
- (c) Find intervals where f is increasing and where it is decreasing. [4]
- (d) Find possible points of inflection, if any occur and determine concavity of the graph.
- (e) Identify any asymptotes that may exist. [3]
- (f) Sketch the graph of f labelling all major points found above including intercepts if any occur. [5]

B3.

- (a) Sketch and find the area of the region bounded by the graphs of $x = y^2$ and y = x 6.
- (b) Sketch the region bounded by the curves y = x, y = x + 1 x = 0, and y = 2. The region is rotated about the y-axis to form a solid of revolution. Carefully set up an integrand to find the volume of the solid. [10]

B4.

- (a) Find the arc length of the graph of $y = \frac{x^3}{6} + \frac{1}{2x}$ over the interval $\left[\frac{1}{2}, 2\right]$. [10]
- (b) The curve $y = \sqrt{4 x^2}$, $-1 \le x \le 1$ is an arc of the circle $x^2 + y^2 = 4$. Find the area of the surface obtained by rotating this arc about the x-axis. [10]

B5.

- (a) Use the Ratio test to show that the series $\sum_{n=1}^{\infty} \frac{n^3}{3^n}$ converges. [4]
- (b) i. Express the geometric series $\sum_{n=0}^{\infty} \frac{(-4)^{3n}}{5^{n-1}}$ in the form $\sum_{n=0}^{\infty} ar^n$. [4]
 - ii. Analyze the convergence of the series above in i. [4]
- (c) Find the 3rd Taylor polynomial of $f(x) = \sqrt{x}$ centered at c = 4. [8]

B6.

(a) Find the interval and radius of convergence of the power series

$$\sum_{n=0}^{\infty} \frac{1}{(-3)^{2+n}(n^2+1)} (4x-12)^n.$$

[12]

- (b) Find the Taylor series for the function $f(x) = e^{-x}$ about x = -4.
- [8]