UNIVERSITY OF ESWATINI

MAIN EXAMINATION, 2019/2020

BEng I, BSc I, BEd I, BSc IT I, BSc Comp Sci ED I, BASS I, BSc IS I, BSc IT-IDE Î

Title of Paper

: ALGEBRA, TRIG. AND ANALYTIC GEOMETRY

Course Number : MAT111

Time Allowed

: Three (3) Hours

Instructions

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is COMPULSORY and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, B2 B6) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.
- 7. Indicate your program next to your student ID.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

[2 marks] i. State any two properties of the dot product.

ii. Given the vectors
$$\mathbf{A} = 3\hat{i} + 12\hat{j} - 4\hat{k}$$
, $\mathbf{B} = 3\hat{i} - 8\hat{j} - 5\hat{k}$ and $\mathbf{C} = 9\hat{i} - 2\hat{j} + 4\hat{k}$.
Find $\mathbf{B} \cdot (\mathbf{C} + \mathbf{A})$ [5 marks]

- (b) Find the sum of the geometric progression (G.P) $8, -4, 2, \cdots \frac{1}{128}$. [5 marks]
- (c) Find the equation of a straight line that is perpendicular to the line 2y = 4 x and passing [3 marks] throught the point (-1, 1).
- (d) Given the complex numbers $Z_1 = 2 2i$ and $Z_2 = 3 + 4i$
 - i. Express Z_1 in polar form.

[3 marks]

ii. Evaluate $\frac{Z_1}{Z_2}$ and express your final answer in the form a + bi.

[4 marks]

(e) Given the following matrices

$$A = \begin{pmatrix} 1 & -2 \\ 4 & 3 \end{pmatrix}, B = \begin{pmatrix} 3 & -2 \\ 0 & 1 \\ 4 & -3 \end{pmatrix} \text{ and } C = \begin{pmatrix} -1 & 3 & 7 \\ 0 & 5 & -4 \\ 6 & -2 & 1 \end{pmatrix}.$$

Find (where possible)

i.
$$AB^T$$
. [3 marks]

ii. $\det(C)$. (f) Without using a calculator, evaluate

$$i_1 \log_1 135 - \log_2 5 \qquad [2 \text{ marks}]$$

i.
$$\log_3 135 - \log_3 5$$
. [2 marks]
ii. $(\cos 225^\circ - \sin 255^\circ)$. [3 marks]

(g) Using synthetic division, determine the quotient and remainder of

$$\frac{x^3 + 5x^2 + 2x - 8}{x + 2}.$$

[5 marks]

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

B2 (a) Find the first four (4) terms of the binomial expansion of

$$\left(\frac{1}{x^3} + y^2\right)^{16},$$

and simplify term by term.

[8 marks]

(b) A principal sum of money M Emalangeni is invested in an account that pays interest at r%p.a. compounded daily. After t years, the principal amount in the account is given by

$$A(t) = M\left(1 + \frac{r}{365}\right)^{365t}.$$

i. If the principal amount of the account triples in 8 years, find r.

[7 marks]

ii. Find the time it takes for the principal amount on the account to double.

[5 marks]

QUESTION B3 [20 Marks]

B3 (a) Find all the roots of $2x^3 + x^2 - 13x + 6 = 0$.

[6 marks]

(b) Solve for x in the equations:

i.
$$4 \times 5^{x+3} = 7^{2-x}$$
.

[5 marks]

ii.
$$\log_2 x + \log_2(x - 1) = 1$$
.

[3 marks]

(c) The sum of the first 17 terms of an arithemtic progression (A.P) is zero. If the 6th term is 21, [6 marks] determine the first three terms.

OUESTION B4 [20 Marks]

B4 (a) Given the equation: $2\cos^2 x + 3\cos x + 1 = 0$.

i. Find the general solution of the equation.

[6 marks]

ii. Find the particular solution, in radians, in the interval $0 < x \le 2\pi$.

[3 marks]

(b) Prove the trigonometric identity

$$\frac{2\cos^2\theta}{2\cot\theta - \sin 2\theta} = \tan\theta.$$

[6 marks]

(c) Find the angle between the vectors $\mathbf{A} = 3\hat{i} + 12\hat{j} - 4\hat{k}$ and $\mathbf{B} = 3\hat{i} - 8\hat{j} - 5\hat{k}$. [5 marks]

QUESTION B5 [20 Marks]

B5 (a) Solve the following system of linear equations using Crammer's rule

$$x + 2y + z = 1$$
$$x - y - z = 0$$
$$2x + y + z = 3$$

[15 marks]

(b) FInd the radius and centre of the circle

$$x^2 + y^2 - 6x + 8y - 11 = 0.$$

[5 marks]

QUESTION B6 [20 Marks]

B6 (a) Prove using the method of mathematical induction that: $P(n) = 7^n - 2^n$ is always divisible by 5 for integer values of $n \ge 1$. [6 marks]

(b) Calculate the value of the sum

$$\sum_{k=0}^{\infty} 50 \left(\frac{4}{9}\right)^k.$$

[4 marks]

(c) Use de Moivre's theorem to find the square root of $2-2\sqrt{3}i$.

[6 marks]

(d) Find the 10th term of the binomial expansion

$$\left(x^4 + \frac{y^2}{x^2}\right)^{18}.$$

[4 marks]

END OF EXAMINATION