University of Eswatini

RE-SIT EXAMINATION, 2019/2020

BASS

Title of Paper

: Elementary Quantitative Techniques I

Course Number

: MAT101

Time Allowed

: Three (3) Hours

Instructions

- 1. This paper consists of SEVEN (7) questions in TWO sections.
 - (a) Section A is **COMPULSORY** and is worth 40%. Answer ALL questions in this section.
 - (b) Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 2. Show all your working.
- 3. Start each new major question (A1, A2, B2, ..., B7) on a new page and clearly indicate the question number at the top of the page.
- 4. Non-programmable calculators may be used (unless otherwise stated).

Special Requirements: NONE

This examination paper should not be opened until permission has been given by the invigilator.

SECTION A ANSWER ALL QUESTIONS

6

QUESTION A1

(a) Use synthetic division to find the quotient and remainder when

$$P(x) = x^4 - x^3 - 3x^2 + 4x + 4$$
 is divided by $d(x) = x + 2$ (5 marks)

(b) Solve the simultaneous equations

$$5x - 2y = 9$$

$$4x + 5y = -6$$
(5 marks)

- (c) Find the sum of first 10 terms of the following progressions
 - (i) 3, 7, 11, 15, ...

$$\frac{-1}{3}, \frac{2}{3}, \frac{-4}{3}, \frac{8}{3}, \dots$$
 (5 marks)

(d) Find an equation of a straight line through the point (-1, -1) and perpendicular to 2x - 3y = 12 (5 marks)

QUESTION A2

(a) Consider the matrices

$$A = \begin{pmatrix} 4 & -3 \\ 1 & 2 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & -5 \\ 3 & 6 \\ 1 & -4 \end{pmatrix} \qquad C = \begin{pmatrix} 8 & -2 & 3 \\ -1 & 5 & -4 \end{pmatrix}$$
Find (i) $|A|$ (ii) $A^T B^T$ (iii) BC (iv) $C^T B^T$ (12 marks)

(b) Use Cramer's rule to solve

$$3x + 4y + z = 7$$

$$4x + 3y - 2z = -5$$

$$x + 2y + 4z = 20$$

(8 marks)

1

. }

SECTION B

OUESTION B3

- - (ii) Find the middle term of the binomial expansion

$$\left(2x^2 + \frac{1}{x}\right)^{12} \tag{5 marks}$$

- (b) Find the equations of the following lines and express your answer in the form y = mx + c
 - (i) Line through (-1, 4) which is parallel to the line through (1, -1) and 2, 3 (5 marks)
 - (ii) Line through (-1, -2) which is perpendicular to the line 2x + 3y 4 = 0 (5 marks)

OUESTION B4

(a) Given the following matrices

$$A = \begin{pmatrix} -3 & 5 \\ 2 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} -5 & 1 & 2 \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 3 \\ -1 & 0 \\ 4 & -2 \end{pmatrix} \qquad D = \begin{pmatrix} -2 & 9 & 6 \\ -3 & 3 & 4 \\ 2 & -2 & 1 \end{pmatrix} \qquad E = \begin{pmatrix} 3 & -2 & 4 \\ 2 & 1 & 5 \end{pmatrix}$$

Compute

- (i) AE
- (ii) BC
- (iii) $E^T + C$
- (iv) BE^T
- (v) D

(10 marks)

(b) (i) Given that $\sin A = \frac{3}{5}$ and $\cos A$ is negative Find $\sin 2A$ and $\tan 2A$ (5 marks)

$$\frac{2\tan\theta}{1+\tan^2\theta} = 2\sin\theta\cos\theta \tag{5 marks}$$

QUESTION B5

- (a) Prove the following identities
 - (i) $\sec x \sin x \tan x = \cos x$
 - (ii) $\sin \theta + \cos \theta \cot \theta = \cos ec \theta$

(10 marks)

8

(b) Given that $\cot \theta = -2$ and that the terminal side is in quadrant IV, find the remaining five trigonometric ratios of θ . (10 marks)

QUESTION B6

(a) Use synthetic division to find the quotient and the remainder

(i)
$$\left(x^3 - 7x^2 - 13x + 3\right) \div \left(x + 2\right)$$

(ii)
$$(2x^4 + 3x^2 - 1) \div (x - 3)$$
 (14 marks)

(b) (i) Find the 10th constant term of the binomial expansion

$$\left(x + \frac{1}{x^2}\right)^{12}$$

(ii) Use the quadratic formula to solve

$$6x^2 - 13x - 5 = 0$$

(6 marks)

QUESTION B7

- (a) (i) Use synthetic division to find the quotient and remainder $(4x^4 x^2 6x 9) \div (x 3)$ (5 marks)
 - (ii) Use long division to find the quotient and remainder $(x^3 7x^2 13x + 3) \div (x + 2)$ (5 marks)
- (b) Prove the following identities

(i)
$$(\tan \theta + \cot \theta)(\cos \theta + \sin \theta) = \csc \theta + \sec \theta$$
 (5 marks)

(ii)
$$\sec x - \sin x \tan x = \cos x$$
 (5 marks)