University of ESwatini

Final Examination, December 2018

B.A.S.S., B.Sc, B.Ed

Title of Paper

: Dynamics II

Course Number

: M355/MAT455

Time Allowed

: Three (3) Hours

Instructions

1. This paper consists of TWO sections.

a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.

b. SECTION B: 60 MARKS

Answer ANY THREE questions.

Submit solutions to ONLY THREE questions in Section B.

- 2. Begin each major question (A1, B2, etc) on a new page.
- 3. Each question in Section B is worth 20%.
- 4. Show all your working.
- 5. Non programmable calculators may be used (unless otherwise stated).
- 6. Special requirements: None.
- 7. Indicate your program next to your student ID number.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section A: Answer All Questions

A1.

- (a) i. Consider a particle moving on a circle, in the xy-plane with radius R and centred at the origin. Is the system holonomic or non-holonomic? Write the equations of the constrains if possible. If the system is holonomic, determine the number of degrees of freedom. [4]
 - ii. For a certain system the kinetic energy T and potential energy V are given by

 $T = \frac{1}{2}m(\dot{x}^2 + \dot{x}\dot{y} + \dot{y}^2), \quad V = V(y),$

where x and y are generalized coordinates. Write down Lagrange's equations for the system. [7]

- iii. When is a mechanical system said to be conservative? [3]
- iv. State D'Alembert's Principle. [3]
- v. In your own words, give the main differences between Lagrangian and Hamiltonian mechanics. [4]
- (b) i. Is the transformation P = -q, $Q = p + 2q^2$, canonical? [5]
 - ii. Evaluate the Poisson bracket, $[q^2p, qp]$. [6]
 - iii. Differentiate between Essential and Natural boundary conditions. [3]
 - iv. Show that the differential equation for the functional

$$I = \int_a^b x(y'^2 - y^2) dx$$

is

$$y'' + \frac{1}{x}y + y = 0$$

[5]

Section B: Answer Three(3) Questions Only

B2. (a) Consider the following equation derived from the D'Alembert's Principle,

$$\sum_{i}^{n} Q_{j} \delta q_{j} = \sum_{i}^{N} \sum_{j}^{n} \left[\frac{d}{dt} \left(m_{i} \dot{\mathbf{r}}_{i} \frac{\partial \dot{\mathbf{r}}_{i}}{\partial \dot{q}_{j}} \right) - m_{i} \dot{\mathbf{r}}_{i} \frac{\partial \dot{\mathbf{r}}_{i}}{\partial q_{j}} \right] \delta q_{j}$$
(1)

where Q_j 's are the generalized forces associated with the generalized coordinates q_j 's and \mathbf{r}_i 's are the position vectors for the system's particles. Given also that the kinetic energy of a system of N particles is

$$T = \frac{1}{2} \sum_{i}^{N} m_i \dot{\mathbf{r}}_i^2 = \frac{1}{2} \sum_{i}^{N} m_i \dot{\mathbf{r}}_i . \dot{\mathbf{r}}_i.$$
 (2)

Show that equation (1) reduces to the Lagrange's equations of motion

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{q}_j}\right) - \frac{\partial T}{\partial q_j} = Q_j, \quad j = 1, 2, 3, \dots, n.$$

for conservative systems with holonomic constraints.

(b) The Lagrangian of a system is give by

$$L=rac{1}{2}(M+m)\dot{x}^2+rac{1}{2}m\dot{y}^2+m\dot{x}\dot{y}\cos heta-mg(h-y\sin heta),$$

where x and y are the generalised coordinates, h is a constant.

- i. Derive the Lagrange's equations of motion for the system.
- ii. Find the canonical momenta p_x and p_y and show that

$$\dot{x} = \frac{p_x - p_y \cos \theta}{M + m \sin^2 \theta}, \quad \dot{y} = \frac{(m+M)p_y - mp_x \cos \theta}{m(M + m \sin^2 \theta)}.$$

[6]

[8]

[6]

- **B3.** (a) Derive Hamilton's equations when H does not contain time t explicitly. [6]
 - (b) A Hamiltonian for a system is given by $H = \frac{1}{2} \left(\frac{1}{q^2} + p^2 q^4 \right)$.
 - i. Find the corresponding Lagrangian assuming that p is the generalized momentum and q is a generalized coordinate corresponding to p. [6]
 - ii. Determine Hamilton's equations of motion and show that the equation of motion corresponding to q is $q\ddot{q} = 2\dot{q}^2 + q^2$. [8]
- B4. (a) By any method you choose, show that the following transformation is canonical.

$$Q = \ln\left(\frac{p}{q}\right), \quad P = -\left(\frac{q^2}{2} + 1\right)\frac{p}{q}$$
 [10]

(b) For what values of α is the following transformation canonical?

$$P = -\sin \alpha q + \cos \alpha p$$
, $Q = \cos \alpha q + \sin \alpha p$.

[10]

- B5. (a) Consider a system with Hamiltonian $H = \frac{1}{2}(p_1^2 + q_1^2 + p_2^2 + q_2^2)$. Show that $M = p_1p_2 + q_1q_2$ and $L = p_1q_2 q_1p_2$ are constants of motion by evaluating the Poisson brackets [M, H] and [L, H].
 - (b) Find the curve y(x) that minimises the functional

$$I = \int_{-1}^{1} (x^2 y'^2 + 12y^2) dx, \quad y(-1) = -1, \quad y(1) = 1.$$

[10]

B6. (a) Show that if F has no explicit dependence on x (i.e $\partial F/\partial x = 0$) then F = F(y, y') and the Euler-Lagrange's equation simplifies to the Beltrami-identity which is defined by the equation

$$F - y' \frac{\partial F}{\partial y'} = C.$$

[10]

(b) Show that Euler-Lagrange equation for the functional

$$I = \int_a^b y \sqrt{1 + (y')^2} dx,$$

is given by

$$yy'' = 1 + (y')^2.$$

[10]