University of Eswatini

SUPPLIMENTARY EXAMINATION, 2018/2019

BASS IV, B.Ed (Sec.) IV, B.Sc IV

Title of Paper : 1

: INTRODUCTION TO MATHEMATICS OF FINANCE

Course Number

: MAT 442

Time Allowed

: Three (3) Hours

Instructions:

1. This paper consists of SIX (6) questions in TWO sections.

- 2. Section A is **COMPULSORY** and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Start each new major question (A1-A5, B1 B5) on a new page and clearly indicate the question number at the top of the page.
- 5. You can answer questions in any order.
- 6. Indicate your program next to your student ID.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1.

(a.) Define a probability space.

[2 marks]

(b.) Suppose $X,Y:\Omega\to\Re$ are two given price functions and $g:\Re\to\Re$ is a Borel measurable function. Given that $Y=aX^2+c;\ a,c\in\Re$, show that price Y is H_X -measurable and identify the conditions.

[6 marks]

QUESTION A2.

(a.) Define a stochastic process $\{X_t\}_{t\geq 0}$.

[2 marks]

(b.) Let $X: \Omega \to \Re$ be a random variable with cumulative distribution function F(x) given by $F(x) = P[X \le x]$ and $[0 \le F \le 1]$ Show that $\lim_{x \to -\infty} F(x) = 0$ and $\lim_{x \to +\infty} F(x) = 1$.

[6 marks]

QUESTION A3.

(a.) Define a σ -algebra.

[4 marks]

(b.) Given (Ω, \Im, P) and a random variable X.

When is X said to be \Im -measurable.

[4 marks]

QUESTION A4.

(a.) Define a Brownian Motion and give 2 financial industry-based Brownian processes.

[4 marks]

(b.) Given a Brownian price process B(t).

Show that the increments B_{t_1} , $(B_{t_2} - B_{t_1})$, $(B_{t_3} - B_{t_2})$, ... at distinct times t_i ; i = 1, 2, 3, ... are independent.

[4 marks]

QUESTION A5.

(a.) Given a market process X(t) whose changes is described by

$$\frac{dX(t)}{dt} = a(t, X(t)) + b(t, X(t))."noise."$$

where a(.) and b(.) are some given functions. If the noise is W(t), give the basic properties of W(t).

[3 marks]

(b.) Given that $W(t) \sim B(t)$, Construct a general solution for X(t).

[5 marks]

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B1

a.) Define an elementary function.

[2 marks]

b.) List three (3) real valued functions that are elementary functions.

[5 marks]

c.) State and prove Ito isometry for elementary and bounded function $\phi(t,\omega)$.

[13 marks]

QUESTION B2.

a.) Define an Ito process.

[3 marks]

b.) List four (4) properties of the Ito integral.

[4 marks]

c.) Evaluate the integral $I = \int_0^t s^3 B^3 dB(s)$.

[13 marks]

QUESTION B3.

a.) Define an arbitrage market.

[3 marks]

b.) Consider the market process X(t) given by

$$dX_1(t) = 3dt + 2dB_1(t)$$

$$dX_2(t) = -2dt + dB_1(t) + 5dB_2(t).$$

Show that a portfolio $\theta(t)$ should be allowed to do business in X(t).

[14 marks]

c.) Find the value process $V^{\theta}(t)$ at expiration time t = T.

[3 marks]

QUESTION B4.

a.) State the Martingale representation theorem.

[4 marks]

b.) Use Ito's formula to prove that if

$$dZ(t) = Z(t)\theta(t,\omega)dB(t)$$

then Z(t) is a martingale for all $t \leq T$ provided that $Z(t)\theta_k(t,\omega) \in \nu(0,T)$ $1 \leq k \leq n$.

[16 marks]

QUESTION B5.

a.) Use Ito's formula to write X(t) in the form

$$dX(t) = u(t, \omega)dt + v(t, \omega)dB(t)$$

$$(i.)X(t) = tB^{2}(t).$$
 [4 marks]

(ii.) $X(t) = 2 + 4t + e^{B(t)}$. [4 marks]

b.) Find the solution to the Ornstein-Uhlenbeck equation

$$dS(t) = 5S(t)dt + 0.22dB(t); S(0) = 10 \text{ units}$$

representing the change in price S(t) of an option trading in an African stock market at time $t \in [0, t]$.

[12 marks]

END OF EXAMINATION