University of Eswatini

Main Examination, 2018/2019

BASS, B.Ed (Sec.), B.Sc.

Title of Paper : Optimisation Theory

Course Number : MAT418

Time Allowed : Three (3) Hours

Instructions

1. This paper consists of SEVEN (7) questions in TWO sections.

- 2. Section A is **COMPULSORY** and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, A2, B2, ..., B6) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.
- 7. Some formulas are given on the last page.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

17

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [20 Marks]

- (a) Give precise definitions of the following.
 - i. Convex set S in \mathbb{R}^n . (2)
 - ii. Convex function from a convex set $S \subseteq \mathbb{R}^n$ to \mathbb{R} . (2)
 - iii. Concave function from a convex set $S \subseteq \mathbb{R}^n$ to \mathbb{R} . (2)
- (b) Show that $f(x_1, x_2) = x_1^2 + 2x_1x_2 + x_2^2$ is a convex function on \mathbb{R}^2 . (4)
- (c) Show that $f(x_1, x_2) = -x_1^2 x_1x_2 2x_2^2$ is a concave function on \mathbb{R}^2 . (4)
- (d) Find the optimal solution to

max
$$x^3 - 3x^2 + 3x - 1$$

s.t. $-2 \le x \le 4$

(6)

QUESTION A2 [20 Marks]

(a) Use the graphical method to solve the following LP. State which constraint is binding and which is non-binding (if any).

max
$$z = x_1 + x_2$$

s.t. $2x_1 + 3x_2 \le 18$
 $2x_1 + x_2 \le 12$
 $x_1, x_2 \ge 0$

(10)

(b) Consider the following LP.

max
$$z = 3x_1 + x_2$$

s.t. $x_1 + x_2 \ge 3$
 $2x_1 + x_2 \le 4$
 $x_1 + x_2 = 4$
 $x_1, x_2 \ge 0$

- i. Write down the initial simplex tableau for the "Big-M" method. (5)
- ii. Perform one step of the "Big-M" method to find a new bfs. Is the new bfs optimal? (5)

END OF SECTION A – TURN OVER

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

(a) Find all local extrema and saddle points of the function

$$f(x_1, x_2) = x_1^2 + x_2^2 + x_1^2 x_2 + 4.$$

(10)

(b) Use the method of steepest ascent to approximate the solution to

max
$$z = -(x_1 - 3)^2 - (x_2 - 2)^2$$

s.t. $(x_1, x_2) \in \mathbb{R}^2$.

Start at the point (1,1).

(10)

QUESTION B4 [20 Marks]

(a) A company is planning to spend E10,000 on advertising. It costs E3,000 per minute to advertise on TV and E1,000 per minute to advertise on radio. If the company buys *x* minutes of TV adverts and *y* minutes of radio adverts, its revenue (in thousands of emalangeni) is given by

$$R(x,y) = -2x^2 - y^2 + xy + 8x + 3y.$$

Use Lagrange multipliers to determine the values of x and y that will maximise the company's revenue. (10)

(b) The Douglas-Cobb model says that when a company invests L units of labour and K units of capital, the production level P is given by

$$P = bL^{\alpha}K^{1-\alpha}$$

where b > 0 and $0 < \alpha < 1$ are constants. Suppose that the cost per unit labour is m emalangeni and the cost per unit capital is n emalangeni and that the company has a budget of B emalangeni to spend on total labour and capital. Show that maximum production occurs when

$$L = \frac{\alpha B}{m}$$
 and $K = \frac{(1-\alpha)B}{n}$.

(10)

QUESTION B5 [20 Marks]

(a) Consider the following LP.

max
$$z = 2x_1 - 3x_2 + x_3$$

s.t. $6x_1 + 8x_2 + x_3 \le 100$
 $4x_1 + 3x_2 - 2x_3 \le 90$
 $x_1, x_2, x_3 \ge 0$

After adding slack variables s_1 and s_2 , and solving using the simplex algorithm, the basic variables in the LP's optimal solution are $BV = \{x_3, s_2\}$ (in that order).

Construct the LP's optimal tableau using formulas.

(10)

(b) Consider the following LP.

max
$$z = 3x_1 + 2x_2$$

s.t. $2x_1 + x_2 \le 100$
 $x_1 + x_2 \le 80$
 $x_1 \le 40$
 $x_1, x_2 \ge 0$

After adding slack variables s_1 , s_2 , s_3 and solving using the simplex algorithm, the optimal tableau is found to be

z	x_1	x_2	s_1	s_2	s_3	rhs
1	0	0	1	1	0	180
0	1	0	1	-1	0	20
0	0	1	-1	2	0	60
0	0	0	-1	1	1	20

- i. Show that the current basis remains optimal for $1.5 \le c_2 \le 3$. (5)
- ii. Show that the current basis remains optimal for $80 \le b_1 \le 120$. (5)

Hint:

$$\begin{pmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 0 \\ -1 & 1 & 1 \end{pmatrix}.$$

ACADEMIC YEAR: 2018/2019

PAGE 4

QUESTION B6 [20 Marks]

Use the Kuhn-Tucker conditions to find the optimal solution to the following problem.

max
$$z = x_1(30 - x_1) + x_2(50 - 2x_2) - 3x_1 - 5x_2 - 10x_3$$

s.t. $x_1 + x_2 - x_3 \le 0$
 $x_3 \le 18$

QUESTION B7 [20 Marks]

Consider the following LP.

max
$$z = 4x_1 + x_2 + 2x_3$$

s.t. $8x_1 + 3x_2 + x_3 \le 2$
 $6x_1 + x_2 + x_3 \le 8$
 $x_1, x_2, x_3 \ge 0$

(a) Find the dual of the LP.

- (4)
- (b) Use the graphical method to solve the dual of the LP.
- (8)

(c) Use complementary slackness to solve the primal LP.

(8)

End of Examination Paper

USEFUL FORMULAS

$$\bar{c}_j = \mathbf{c}_{BV}B^{-1}\mathbf{a}_j - c_j, \quad \bar{\mathbf{a}}_j = B^{-1}\mathbf{a}_j, \quad \bar{\mathbf{b}} = B^{-1}\mathbf{b}$$

$$\bar{z} = \mathbf{c}_{BV}B^{-1}\mathbf{b}, \quad \bar{c}_{s_i} = i\text{-th element of } \mathbf{c}_{BV}B^{-1}.$$