UNIVERSITY OF ESWATINI

MAIN EXAMINATION, 2018/2019

BASS, B.Ed (Sec.), B.Sc.

Title of Paper : Optimisation Theory

Course Number @ MAT418

Time Allowed  : Three (3) Hours

Instructions
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SECTION A [40 Marks]: ANSWER ALL QUESTIONS
QUESTION A1 [20 Marks]
(a) Give precise definitions of the following.
i. Convex set S in R”.
ii. Convex function from a convex set S C R" to IR.
iii. Concave function from a convexset S C R"” to R.
(b) Show that f(x1, xp) == x% + 2x1x5 -+ x5 is a convex function on IR?.
" (c) Show that f(x1, x2) = —x% — x1%; — 2x3 is a concave function on IR?,

(d) Find the optimal solution to

max x3_3x2—|—3x_1

st —2<x<4

QUESTION A2 [20 Marks]

(a) Use the graphical method to solve the following LP. State which con-
straint is binding and which is non-binding (if any).

max z = X1 + X9
5.1 le -+ 3x2
2%1 4

X1, X2

(b) Consider the following LP.

max z = 3xq
s.t. X1
2x1
X1

x2
X2
X2
X3
X1, X2
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i. Write down the initial simplex tableau for the “Big-M" method.

ii. Perform one step of the “Big-M"” method to find a new bfs. Is the new

bfs optimal?

END OF SECTION A — TURN OVER
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SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

(a) Find all local extrema and saddle points of the function

Flx1,x2) = X2 x5+ 2y + 4

(10)
{b) Use the method of steepest ascent to approximate the solution to
max z = —(x;—3)%— (1 —2)?
s.t. (X1,XQ) € R
Start at the point (1,1). | (10)
QUESTION B4 [20 Marks]

(a) A company is planning to spend E10,000 on advertising. It costs E3,000

per minute to advertise on TV and E1,000 per minute to advertise on

radio. If the company buys x minutes of TV adverts and y minutes of

radio adverts, its revenue (in thousands of emalangeni) is given by

R{x,y) = —2x* —y* + xy + 8x + 3y.

Use Lagrange multipliers to determine the values of x and y that will

maximise the company’s revenue. (10)
(b) The Douglas-Cobb model says that when a company invests L units of

labour and K units of capital, the production level P is given by

P = pL*K'""

where b > 0 and 0 < & < 1 are constants. Suppose that the cost per unit

labour is m emalangeni and the cost per unit capital is n emalangeni and

that the company has a budget of B emalangeni to spend on total labour

and capital. Show that maximum production occurs when

B 1—wa)B
L="2 and K= L————@*-
" n
(10)

TURN OVER
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. QUESTION B5 [20 Marks]

(a) Consider the following LP.

max z = 2Xx; - 3X2 -+ X3
. st 6x1 + 8x, + x3 < 100
4x1 A4 3x9 — ZXQ, < 90
X1, X2, %3 Z 0

After adding slack variables 5; and s7, and solving using the simplex al-
gorithm, the basic variables in the LP’s optimal solution are BV = {x3,5,}
(in that order).

Construct the LP’s optimal tableau using formulas. (10

(b) Consider the following LP.

max z = 3x1 + 2x
s.t. 2x1 + xp < 100
X1 -+ Xz < 80
X1 < 40
x1,% = 0

After adding slack variables sy, 52, 53 and solving using the simplex algo-
rithm, the optimal tableau is found to be

Z X1 X3 S1 Sy S3 rhs
1 ¢ 0 1 1 0 180
o 1 0 1 -1 0 20
0
0

0 1 -1 2 0 60
0 0 -1 1 1 20

i. Show that the current basis remains optimal for 1.5 <y < 3. (5)
ii. Show that the current basis remains optimal for 80 < by < 120. (5)
Hint: |

o N
O
_ O O

- 1 —1 0
=[-1 2 o}.
-1 1 1

TURN OVER
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QUESTION Bé6 [20 Marks]

Use the Kuhn-Tucker conditions to find the optimal solution to the following
problem.

max z = x1(80 — x1) + x%2(50 — 2x2) — 3x; — 5xp — 10x3
s.t. X1+ x—x3 <0
X3 < 18

QUESTION B7 [20 Marks]

Consider the following LP.

max z = 4x; + x + 2x3
s.t. 8x1 + 3x + a3 < 2
6x1 -+ xp + a3 < 8
X1,%2,x3 2 0
(a) Find the dual of the LP, , (4)
(b) Use the graphical method to solve the dual of the LP. (8)
(c) Use complementary slackness to solve the primal LP. (8)

END OF EXAMINATION PAPER \

USEFUL FORMUILAS

Cj = Cngwlaj — Cj, é_lj = B‘la]-, b =B

Z = cgyB~'b, &, = i-th element of cgyB~L,




