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SECTION A [40 Marks]: ANSWER ALL QUESTTONS

QUESTION Al [40 Marks)]

a) Determine the order of the partial differential equation satisfied by (3]
plr,s) = Qr — s) + ¥(5r — 8) + {57 + s5),
where 2, ¥ and & are arbitrary functions.
b) Given that the arbitrary function I'(z,y) is differentiable, show that 5]
wlm,y) = xe® + Py — %)

satisfies
Ty + 220y, — u = 22,
¢) Suppose that the temnperature distribution in a rod of length 5m is given by T(x,t). As-
suming that one end is kept at zero temperature and the other end is insulated such that

there is no heat flow, write down a model that could be used to determine the temperature
distribution T(x, t), provided that the initial temperature distribution is given by e™. [5]

d) Derive Parseval’s identity theorem for the sunmability of the Fourier series coefficients of a
function. (6]

e) Consider the Cauchy problem for the wave equation with —oo <z < o and ¢ > (h

fi! - f:e::z: = 01 f(.’L,O) =T~ 1’ jf(:L, O) = 23:

Determine f (1,1). (7
f) Consider the initial-value problem Selve the problem using
1) Solve
—da,, + u, = 8w,
using the method of characteristics [7]
ii) Solve

Ty +ug =z, u(z,0) =u(0,1) =0,

using the method Laplace transforms [7]
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SECTION B: ANSWER ANY THREFE QUESTIONS

QUESTION B2 [20 Marks]

a) Consider the partial differential equation (PDE)

Uy = 2 SIR(T) Uy — cos?(z)uyy, + € = 0.

(i) Classify the PDE by stating its order, linearity, and homogeneity. (3]

(ii) Determine whether the PDE is hyperbolic, parabolic or elliptic. 2]
(ii1) Express the PDE in canonical form. [7}

b) Find the general solution of 3]

x — ) (Y u, — 2uy) = 22+ %),
y

using the method of characteristics.

QUESTION B3 [20 Marks)

Consider the Cauchy problem for the wave equation with —co < z < oc and ¢ > O

Prt = 1)2.0:1r:c1
o(2,0) = §(),
pi(,0) = ¥(z),

where v is a constant. Show that the solution of the wave equation is given by: [20]

ot

pla, ) = % (qb(:f: +ut) + Pl —wi) + ;1)— / '(/;(”/)d’y)

-l

QUESTION B4 [20 Marks]

(a} Use Laplace transforms to find a solution [15]

Uy — U = sit{wz), 0Lz <L3, >0,
w{z,0) =0, 0<z<3,
u(0,4) =0, w(3,t)=0
(b) Using the fact that the Laplace transform of u(w,¢) with respect to the variable ¢ is given
by .
LA{u(z,t)} = / e, dl = U, s),
0

Show that £ {2} = sU/{z,s) — u(z,0) [5]




UNESWA JULY EXAMINATIONS ACADEMIC YEAR 2018/2019

COURSE NAME AND CODE: MAT416/M415 Partial Differential Equations

PAGE 3

QUESTION B5 [20 Marks)

Cousider the following wave equation given by

Uy — Uy = 0, 0<x <, t >0,
w(x,0) =0, 0ZLz<m,
w(z, 0) = 2sin(z),
u(0,t) =0,
w(m,t) =10

Find u{z,t) using the method of separation of variables.

QUESTION B6 [20 Marks]

Consider the Dirichlet problem of a sphere of radius + = a.

g ( 20u L 0 (. nouy ,
5;(1 8T)+Sin(d))a¢ (bm(qﬁ}a(ﬁ)A(}, 0<r<a.

wa, ¢} = f(¢), 0<g<m

Use the method of separation of variables to determine u(r, ¢).
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