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SECTION A [40 Marks]: ANSWER ALL QUESTIONS
QUESTION A1 [40 Marks]
Al (a) Show that the differential equation
y =yeos(t), 0<t<1, y0)=1
has a unique solution {5 Marks|
(b) List all the conditions that must be satisfied for an initial value problem
to be well-posed. [4 Marks]
(c) Derive an ezplicit finite difference scheme for the differential equation
u _ i —|~u 1
ot Ox?
[6 Marks]

(d) Find the equation of a parabola of the form y = axz?+b that best represents the following

data using the method of least squares.

2|10 1
y|3 1 2

{(e) Consider the following ordinary differential equation

d
—&%zytAtz, 0<t<12, y(0)=1

Solve the problem using the improved Euler’s method with h = 0.6.

(f) Use the method of undetermined coefficients to derive the

two-step Adams-Bashforth multi-step method

(g) Discuss the consistency, zero-stability and convergence of

the linear multi-step method

h
Yotz = 2Un — Yny1 + ‘2"[5fn+1 + fal

[7 Marks|

[5 Marks]

[7 Marks]

{6 Marks]
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SECTION B: ANSWER ANY THREFE QUESTIONS

QUESTION B2 [20 Marks]

B2 (a) Derive the recurrence formula
T()(CE) == 1, T1(£C) = 1, Tﬂ+1 (E) -+ Tn_1(.‘}3) = 2$Tn($)

where 1), are Chebyshev polynomials of order n

defined by [5 Marks]
Ty(z) = cos(narccos(z)), foreach n >0 with =z € [-1,1]

(b) Show that the general continuous least squares trigonometric
polynomial S, (x) for
-1 <z <0
1 0<az<nw
is

S, () = ;2}‘2 (—]"—‘—(kiq sin ki

15 Marks]

QUESTION B3 [20 Marks]

B3 Consider the boundary' value problem
Upy T Uyy =0, 0<2<2,0<y <3,
w(z,0) =x/2, u(z,3) =1, 0 <z <2,
u(0,y) =y/3, u(2,y) =1, 0<y <3.

Use finite differences on a uniform grid, with h =k =1,

to approximate both u(1,1) and (1, 2). {20 Marks]
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QUESTION B4 [20 Marks]

B4 (a) Use the Runge-Kutta method of order 4 with h = 0.1 to

solve the given differential equation

Y =y—4y’, y(0)=-1
on 0 < £ < 0.2 and compare the approximate solution
et
4t — 5
(b) Use the Gram-Schmidt procedure to calculate Ly(x) and La(z) where

against the exact solution y(t) =

{Lo(z), L1(z), Ly()} is an orthogonal set of polynomials on (0, co)
with respect to the weight function w(z) = e and Ly(z) =1

QUESTION B5 [20 Marks)

B5 Consider the standard initial value problem

¥ = fty), y(0) =1

we would like to construct a numerical method from the quadratic interpolant

Py(t), of f at the equally spaced nodes t,-1, £, and 4.
(a) Write down the Newton form of P in forward difference form.

(b) By integrating between z, and z,, derive the implicit method

h
Yrp1 = Yn1 -+ g{fnul + 4fn + fn-l—l}

(c) Prove that this method is of order 4, and find the leading term

in the local truncation error.

[10 Marks]

[10 Marks]

[4 Marks]

[8 Marks]

[8 Marksj
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QUESTION B6 [20 Marks)

B6 (a) Use finite differences with step size b = 1 and central difference approximation on all

derivatives to approximate the solution of
y'+y oy =0, y(0)=0, y(3)=1

[10 Marks]

(b) Find the linear least squares approximation of

in the interval [0, 1]. [10 Marks]

END OF EXAMINATION PAPER




