University of Swaziland

MAIN EXAMINATION, 2018/2019

BSc.III, B.Ed III, BASS III

Title of Paper

: Mathematical Statistics I

Course Number

: MAT340

Time Allowed

: Three (3) Hours

Instructions

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is **COMPULSORY** and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, B2 B6) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.
- 7. Indicate your program next to your student ID.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks]

- A1 (a) Two football teams M and C each have one game left to play (not against each other) in the season. If M wins and C does not win, or if M draws and C loses, then M wins the championship. Otherwise C wins the championship. The probabilities that M wins, draws or loses the last game are $\frac{1}{2}$, $\frac{1}{6}$ and $\frac{1}{3}$, respectively. The probabilities that C wins, draws or loses the last game are $\frac{2}{3}$, $\frac{1}{6}$ and $\frac{1}{6}$, respectively.
 - (i) What is the probability that M wins the championship?

[5 Marks]

(ii) What is the probability that C has drawn the last game given that M has won the championship?

[3 Marks]

(b) Suppose that

$$F(y) = \begin{cases} 0, & \text{for } y < 0 \\ y, & \text{for } 0 \le y \le 1 \\ 1, & \text{for } y > 1 \end{cases}$$

Find the probability density function for Y and compute Var(Y).

[6 Marks]

(c) Consider an experiment where two dice are rolled. Let A be the event where the sum of two dice equals 3, B be the event that the sum of two dice equals 7 and C be the event that at least one of the dice shows a 1. Compute P(A|C). Are A and C independent?

[8 Marks]

(d) Let X have a geometric distribution with parameter p. Compute E(X).

[6 Marks]

(e) Suppose that a random system of security patrol is devised so that a patrol officer may visit a given location $Y = 0, 1, 2, 3, \ldots$ times per half-hour period, with each location being visited an average of once per time period. Assume that Y possesses, approximately, a Poisson probability distribution. Calculate the probability that the patrol officer will miss a given location during a half-hour period. What is the probability that it will be visited at least once?

[5 Marks]

(f) Suppose that Y has an exponential probability density function. Show that, if a > 0 and b > 0, P(Y > a + b|Y > a) = P(Y > b).

[7 Marks]

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

B2 (a) The joint probability distribution function of two random variables Y and Z is

$$P(Y = y, Z = z) = \frac{e^{-\lambda} \lambda^{y+z}}{y!z!} \theta^y (1 - \theta)^z, \ y = 0, 1, 2, \dots; z = 0, 1, 2, \dots$$

(i) Find the marginal distribution of Y and identify it.

[4 Marks]

(ii) Show that Y and Z are independent.

[8 Marks]

(b) Find the moment-generating function for a gamma-distributed random variable.

[8 Marks]

QUESTION B3 [20 Marks]

B3 (a) Let Y_1, Y_2, \ldots, Y_n denote independent random variables with cumulative distribution function F(y) and probability density function f(y).

(i) Derive the probability density function of $Y_{(n)} = max\{Y_1, Y_2, \dots, Y_n\}$.

[6 Marks]

(ii) Electronic components of a certain type have a length of life Y, with probability density given by

 $f(y) = \begin{cases} (1/100)e^{-y/100}, & \text{if } y \ge 0\\ 0, & \text{elsewhere} \end{cases}$

(Length of life is measured in hours.) Suppose that two such components operate independently and in parallel in a certain system (hence, the system does not fail until both components fail). Find the density function for X, the length of life of the system. Hence compute the probability that X > 200 hours.

[6 Marks]

(b) Let Y_1, Y_2, \ldots, Y_n be independent random variables with $E(Y_i) = \mu$ and $V(Y_i) = \sigma^2$. Let

$$\bar{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$$

and show that $E(\bar{Y}) = \mu$ and $Var(\bar{Y}) = \sigma^2/n$.

[8 Marks]

QUESTION B4 [20 Marks]

B4 (a) A soft-drink machine has a random amount Y_2 in supply at the beginning of a given day and dispenses a random amount Y_1 during the day (with measurements in gallons). It is not resupplied during the day, and hence $Y_1 \leq Y_2$. It has been observed that Y_1 and Y_2 have a joint density given by

$$f(y_1, y_2) = \begin{cases} 1/2, & \text{if } 0 \leq y_1 \leq y_2 \leq 2 \\ 0, & \text{elsewhere.} \end{cases}$$

Find the conditional probability density of Y_1 given $Y_2 = y_2$. Evaluate the probability that less than 1/2 gallon will be sold, given that the machine contains 2 gallons at the start of the day.

[10 Marks]

(a) Consider the experiment of tossing a fair coin 3 times. Let X be the number of heads on the first toss and F the number of heads on the first two tosses. Fill the joint probability table for X and F. Compute Cov(X, F).

[10 Marks]

QUESTION B5 [20 Marks]

B5 (a) The median of the distribution of a continuous random variable Y is the value $\phi_{0.5}$ such that $P(Y \le \phi_{0.5}) = 0.5$. What is the median of the uniform distribution on the interval (θ_1, θ_2) ?

[5 Marks]

(b) The discrete random variable X has the binomial distribution

$$P(X = x) = {m \choose x} \theta^x (1 - \theta)^{m-x}, \ x = 0, 1, \dots, m$$

where m is a positive integer and $0 < \theta < 1$. Find the moment-generating function for X and use it to find the expected value and variance.

[10 Marks]

(c) X_1, X_2, \ldots, X_n are independent random variables, each with the binomial distribution given above. Use moment generating functions to prove that $S = X_1 + X_2 + \ldots + X_n$ is also a binomial random variable.

[5 Marks]

QUESTION B6 [20 Marks]

B6 (a) The continuous random variables X and Y have joint probability density function

$$f_{XY}(x,y) = \begin{cases} \frac{\Gamma(\alpha+\beta+\gamma)}{\Gamma(\alpha)\Gamma(\beta)\Gamma(\gamma)} x^{\alpha-1} y^{\beta-1} (1-x-y)^{\gamma-1}, & 0 < x < 1, 0 < y < 1, x+y < 1, \\ 0, & \text{otherwise} \end{cases}$$

where $\alpha > 0$, $\beta > 0$ and $\gamma > 0$ are parameters and $\Gamma(.)$ is the gamma function. Obtain the joint probability density function of

$$U = 1 - X, \ V = \frac{Y}{1 - X}.$$

[10 Marks]

(b) Obtain the marginal probability density functions for U and V and identify these marginal distributions. Compute E(V).

[10 Marks]

_End (ΟF	EXAMINATION	Paper
END (ΟF	EXAMINATION	PAPER