University of Eswatini

Re-sit/Supplementary Examination, January 2019

B.Sc III, B.A.S.S III, B.Ed III

Title of Paper

: Real Analysis

Course Code

: MAT331/M331

Time Allowed

: Three (3) Hours

Instructions

1. This paper consists of TWO sections.

a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.

b. SECTION B: 60 MARKS

Answer ANY THREE questions.

Submit solutions to ONLY THREE questions in Section B.

- 2. Each question in Section B is worth 20%.
- 3. Show all your working.
- 4. Special requirements: None.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A: ANSWER ALL QUESTIONS

Question 1

. ,	ine the following terms	r1
(i)	Limit point of a subset S of \Re .	[2]
(ii)	Bounded function.	[2]
(b) (i)	If x and y are any two real numbers, then prove that $ x + y \le x + y $	[4]
(ii)	Prove that every subset of a bounded set is bounded.	[4]
(iii)	Using the ϵ, N definition show that the sequence $\left\{\frac{1}{n}\right\}$ converges to 0.	[4]
(iv)	Find the limit superior and limit inferior of sequence $<1,3,5,1,3,5,\cdots$	>. [4]
(v)	Show that the function $f(x) = 3x + 2$ is continuous in the interval $(0, 4)$.	
(vi)	State Cauchy Criterion for convergent Series.	[4]
(vii)	If a function f is uniformly continuous on an interval I , then it is continuous on I .	ous [4]
(viii)	Prove that if a function is differentiable at a point then it is continuous that point.	s at [4]
(ix)	State the Riemann's integrability criterion.	[4]

SECTION B: ANSWER ANY 3 QUESTIONS

Question 2

(a) Define a Cauchy Sequence.

4

- (b) Show that if x is a limit point of A and $A \subset B$, then x is also a limit point of B.
- (c) By finding the left-hand and right-hand derivatives of

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{when } x \neq 0\\ 0 & \text{when } x = 0 \end{cases}$$

determine f'(0).

[8]

Question 3

- (a) Prove that a sequence $<\frac{2n-7}{3n+2}>$
 - (a) is monotonically increasing,

[4]

(b) is bounded and

[4]

(c) tends to the limit $\frac{2}{3}$.

[4]

(b) If a series $\sum u_n$ is convergent, then $\lim_{n\to\infty} = 0$. Is the converse true? Explain your answer.

Question 4

- (a) Suppose $\sum a_n$ and $\sum b_n$ are positive term series with $a_n \leq b_n$ for all n. If $\sum b_n$ converges, show that so does $\sum a_n$.
- (b) Let $\sum_{n=1}^{\infty} a_n$ be series of positive terms. Name at least three tests for convergence of this series.
- (c) Prove that if $\sum a_n$ is absolutely convergent, then it is convergent (i.e., every absolutely convergent series is convergent). [8]

Question 5

(a) Let
$$f(x) = \frac{x^2 + 2}{x^2 + 1}$$
, then given $\epsilon > 0$, find a real number δ such that $|f(x) - 2| < \epsilon$ whenever $0 < |x| < \delta$. [6]

(b) Show that the function defined by $f(x) = x^2$ is uniformly continuous on [-2, 2].

[6]

(c) Using $\epsilon - \delta$ definition, prove that

$$f(x) = \begin{cases} x \sin\frac{1}{x} & if x \neq 0 \\ 0 & if x = 0 \end{cases}$$
 is continuous at $x = 0$ [8]

Question 6

- (a) Let f(x) = x for $x \in [0,1]$ and let $P = \{0,\frac{1}{3},\frac{2}{3},1\}$ be a partition of [0,1]. Compute U(P,f) and L(P,f).
- (b) Using the definition of the Riemann integral show that $\int_1^2 (2x+3) = 6$. [12]

End of Examination Paper