University of Eswatini

MAIN EXAMINATION, 2018/2019

BASS III, B.Ed. (Sec.) III; B.Sc III

Title of Paper

: Abstract Algebra I

Course Number

: M323/MAT324

Time Allowed

: Three (3) Hours

Instructions

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is **COMPULSORY** and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, B2 B6) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.
- 7. Indicate your program next to your student ID.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

iii. State Fundamental Homomorphism Theorem.

QUESTION A1 [40 Marks]

QUESTION AT [40 Manie]	
A1 (a) Define each of the following:i. A relation from a set X into a set Y.	[2 marks]
ii. A mapping from a set X into a set Y .	[2 marks]
iii. A binary operation on a set X .	[3 marks]
 iv. If Z denote set of integers, let * be a binary operation on Z defined by x * y = xy + 4 for all x, y ∈ Z. (i) Determine (4 * -2) * 5, (ii) If x * 2 = 10, find x. 	[4 marks]
(b) i. State Principle of Well-Ordering.	[2 marks]
ii. Is it possible to pay total of $E100674$ for buying several $E12$ items and several $E32$ items?	[5 marks]
(c) i. Give the definition of a group.	[5 marks]
ii. Let (\mathbb{Z}, \oplus) be a group, where $x \oplus y = x + y - 1$ for all $x, y \in \mathbb{Z}$. Find the identity element of \mathbb{Z} and inverse of each of the element under the operation \oplus .	[4 marks]
iii. Let $\alpha = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ and $\beta = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$. Compute $\alpha^{-1}\beta$.	[3 marks]
iv. Write the following permutations in the cyclic notation. $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 1 & 5 & 4 \end{pmatrix} \text{ and } \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 1 & 3 & 2 \end{pmatrix}$	[4 marks]
(d) i. Define a subgroup of a group.	[2 marks]
ii. State Lagrange's Theorem.	[2 marks]
iii State Fundamental Homomorphism Theorem.	[2 marks]

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

B2 (a) Let \mathbb{Z} be a set of integers. For any $a, b, c \in \mathbb{Z}$, prove that $c \mid (xa + yb)$ if $c \mid a$ and $c \mid b$ for all $x, y \in \mathbb{Z}$.

(b) Let N be set of natural numbers. Prove that for all $n \in \mathbb{N}$, $27 \mid (10^n + 18n - 1)$.

[11 marks]

QUESTION B3 [20 Marks]

B3 (a) Let \mathbb{Q} be a set of rational numbers. Define a binary operation \star on $G := \mathbb{Q} - \{0\}$ by

$$a\star b=\frac{ab}{3} \ \text{ for all } \ a,b\in G.$$

Show that (G, \star) is a group.

[11 marks]

(b) Prove that a group (G, *) is abelian if and only if $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in G$.

[9 marks]

QUESTION B4 [20 Marks]

B4 (a) Define the order of an element of a group G.

[4 marks]

(b) If $G = (\{1, -1, i, -i\}, \cdot)$ where $i = \sqrt{-1}$. Find the order of -1 and i.

[6 marks]

(c) Find the order of $\gamma = (1\ 2\ 5\ 8\ 13)(349)(10\ 12) \in S_{13}$ and hence express γ^{245} in cycle notation.

[10 marks]

QUESTION B5 [20 Marks]

B5 (a) Define a normal subgroup H of a group G.

[5 marks]

(b) If $G = S_3$, $H = \langle (12) \rangle = \{e, (12)\}$. Prove that H is not a normal subgroup of G.

[6 marks]

(c) Let H be a normal subgroup of a group G and K be any subgroup of G. Prove that $HK = \{hk : h \in H, k \in K\}$ is a subgroup of G.

[9 marks]

QUESTION B6 [20 Marks]

B6 (a) Let (G, *) and (H, \odot) be two groups. Define a homomorphism from (G, *) to (H, \odot) .

[4 marks]

(b) Show that a mapping $\beta: (\mathbb{R}, +) \to (\mathbb{R} - \{0\}, \cdot)$ defined by $\beta(x) = 3^x$ for all $x \in \mathbb{R}$ is a homomorphism.

[4 marks]

(c) Let $\alpha: G \to G'$ be a group homomorphism. Prove that kernel of α , denoted by $Ker(\alpha)$ is a normal subgroup of G.

[12 marks]