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This paper consists of SIX (6) questions in TWO sections.
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SECTION A [40 Marks): ANSWER ALL QUESTIONS

QUESTION Al [40 Marks]

Al (a) Define each of the following:

i.

i1

ili.

iv.

il.

ii.

iil.

iv.

if.

iil.

A relation from a set X into a set Y.
A mapping from a set X into a set Y.
A binary operation on a set X.

If 7 denote set of integers, let # be a binary operation on Z defined
by xxy=xy-+4forall z,y € 2.
(i) Determine (4 x —2) * 5, (i) If & % 2 = 10, find z.

i. State Principle of Well—Ordering.

Is it possible to pay total of F100674 for buying several 1£12 items
and several F32 items?

i. Give the definition of a group.

Let (Z,®) be a group, where &Yy =@ +y—1foralzyé€Z.
Find the identity element of Z and inverse of each of the element

under the operation &.

{1 23 {1 2 3 1
Let o = (2 1 3) and 8 = (3 9 l)' Compute o™ .
Whrite the following permutations in the cyclic notation.

123 asy g (12345
a=lg 515 4)™P={y513:

.. Define a subgroup of a group.

State Lagrange’s Theorem.

State Fundamental Homoniorphism Theorem.

| [2 marks]

[2 marks]

[3 marks]|

{4 marks]

[2 marks]

[5 marks]

(5 marks]|

[4 marks)

[3 marks]

[4 marks]
[2 marks]
i2 marks|

{2 marks]
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SECTION B: ANSWER ANY THREE QUESTIONS
QUESTION B2 [20 Marks)
B2 (a) Let Z be a set of integers. For any a,b, ¢ € Z, prove that c | (za + yb)
if c| @ and ¢ b for all z,y CZ. 19 marks|
(b) Let N be st of natural numbers. Prove that for all n € N,
{11 marks]

97 | (10" + 18n — 1).

QUESTION B3 [20 Marks)

B3 (a) Let Q be a set of rational numbers. Define a binary operation * on G := Q — {0} by

axb= a_; for all a,beG.
Show that (G,*) is a group.

(b) Prove that a group (G, ) is abelian if and only if (ab)"' =a "0
for all a,b € G.

QUESTION B4 [20 Marks]|

B4 (a) Define the order of an element of a group G.
(b) If G = ({1,—1,4,—4},-) where i = 1. Find the order of —1 and .
(c) Find the order of 7= (1258 13)(349)(10 12) € S13 and hence express
245 in cycle notation.

QUESTION B35 [20 Marks]

B5 (a) Define a normal subgroup H of a group G.

(b UG =53 H= {(12)) = {e, (12)}. Prove that /7 is not a normal
subgroup of G.

(c} Let I be a normal subgroup of a group G and K be any subgroup of G.

Prove that HK = {hk:h € H, k € K} is a subgroup of G.

QUESTION B6 [20 Marks]

B6 (a) Let (G, x) and (H,®) be two groups. Define a homomorphism from
(G, ¥) to (H,®).
(b) Show that a mapping f : (R, +) — (R — {0},-) defined by B(z) =37
for all z € R is a homomorphism.

(c) Let o : G — G’ be a group homomorphism. Prove that kernel of «,
denoted by [ er(e) is a normal subgroup of G.

END OF EXAMINATION

11 marks]

[9 marks]

{4 marks]
[6 marks]

[10 marks]

[5 marks]
[6 marks]

[9 marks]|

[4 marks}
[4 marks]

[12 marks]




