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. 'This paper consists of SIX (6) questions in TWO sections.
. Section A is COMPULSORY and is worth 40%. Answer ALL questions

in this section.

. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE

(3} questions in this section.

. Show all your working.

. Start each new major question (Al, B2 — B6) on a new page and clearly
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SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks)

a) Consider the complex number ¢ = —4 + 4i. Determine the following:
i) Complex conjugate of ¢. [2]
i) Modulus of ¢. [2]
iii) I m(¢ — ) [2]
iv} In(g). [4]
v} Principal value of the argument of ¢. [2]
b} Determine the order of each pole of f(z} = 5 and the corresponding residues. 5]
c¢) Determine whether w = z*(2 — 34) is regular or not. [5]

d) Using the precise definition of a limit, show that
AN
firg ( 2 ) s

e) Using the known Maclaurin series for f(z} = cos(z), find the Maclaurin series of
f(z) = 2° cos(2?).

[4]

f) Let C be a positively oriented circle such that |z — 2¢| = 2. Evaluate

z—0
/C(z—i—?;i)(z—Bz')dz

d
g) Evaluate f = _?: 1 where ' is a semi-circle in the upper half plane of radius six. [5]
c
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SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

a) Determine if the function g(2) = 3z* + 2z — 3y* — 1 + i(6zy + 2y) is analytic everywhere or
not? If g(z) is analytic, find ¢'(2). [10]

b) Prove that if a function ¢(z2) = a(z,y) + iB(z,y) is analytic in a domain D, then a(z,y)
and S(z,y) are harmonic in D. [10]

QUESTION B3 [20 Marks]

a) Find the value of cosh (z — g) and express your answer in the form a + b. [4]
b) Consider the equation z* = 4. Solve for z, and find I'm(z). [6]
¢) Show that sin"'(z) = —iIn(iz + V1 — 22) ' f10]

QUESTION B4 [20 Marks)

5

4
a) Evaluate / 2% 4z if C' is-the circle lz+3|=9 [10]
c(z—3)°

b} State and prove Liouville’s theorem. [10]

QUESTION B5 [20 Marks]

2
a) Find the Laurent series of f(z) = G-1) in the domain 0 < |z| < 1. 8]
o0 2kt
b} Show that the Maclaurin series of sin(z) = ;(—l)km [12]
QUESTION B6 [20 Marks] -
a) Evaluate / Mdz if C'is a positively oriented circle such that |z] = 3. [4]
c %
. . < 2dz
b) Using Cauchy’s Residue Theorem, evaluate el 18]
0

¢) Let C be a positively oriented circle such that |z| = 4. Using Canchy’s residue theorem,
evaluate 8]

z2—2
/C(z+1)(z2+4)d"‘

FEND OF EXAMINATION PAPER




