University of Eswatini

Main Examination, 2018/2019

BASS III, B.Ed (Sec.) III, B.Sc. III, B.Eng. III

Title of Paper

: Complex Analysis

Course Number : MAT313/M313

Time Allowed

: Three (3) Hours

Instructions

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is **COMPULSORY** and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, B2 B6) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.
- 7. Indicate your program next to your student ID.

Special Requirements: NONE

This examination paper should not be opened until permission has BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks]

- a) Evaluate the following and leave your answer in the form a + ib.
 - i) $\ln(ie)$.
 - ii) $\cosh\left(2\pi i \frac{1}{2}\right)$. [4]
- b) i) Determine whether $f(z) = \frac{z^3}{z^3 + 3z^2 + z}$ is continuous at the point $z_0 = i$. [3]
 - ii) Determine whether $f(z) = r^2 e^{-2i\theta + \pi}$ is holomorphic or not. [5]
- c) i) Evaluate $\int_C \frac{e^z}{z-2} dz$ if C is given by |z| = 3. [2]
 - ii) Let f(z) be continuous on a domain D. If $\int_C f(z)dz = 0$, for every closed contour C lying in D, what can we conclude about f(z) throughout D? [2]
- d) i) Find the Maclaurin series of $\Omega(z) = z^3 e^{4z^2}$. [4]
 - ii) What is the main difference between a Laurent series and a Taylor series? [4]
- e) i) Find and classify the singularities of $f(z) = \frac{1}{z^2+4}$ in the upper half plane. Find the corresponding residue. [4]
 - ii) Using your answer in part i), evaluate $\int_C \frac{dz}{z^2+4}$ where C is a semi-circle in the upper half plane of radius six. [4]
 - iii) Find $\int_C (4\overline{z} 3z)dz$, where C is the right-hand half of the circle |z| = 2, from z = -2i [4]

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

- a) Evaluate Ln(1+i) express your answer in the form a+ib. [2]
- b) Consider the equation $\cos(z) = 2i\sin(z)$. Solve for z. [8]
- c) Show that $\sinh^{-1}(z) = \ln(z + \sqrt{z^2 + 1})$ [10]

QUESTION B3 [20 Marks]

- a) Determine if $g(z) = 4z 6\overline{z} + 3$ is a regular function or not. [4]
- b) Verify that the function, $\alpha(x,y) = \sinh(x)\sin(y)$ is harmonic and find their harmonic conjugate $\beta(x,y)$ and the analytic function $\Omega(z) = \alpha(x,y) + i\beta(x,y)$. [6]
- c) Prove that if a function $\phi(z) = \alpha(x,y) + i\beta(x,y)$ is analytic in a domain D, then $\alpha(x,y)$ and $\beta(x,y)$ are harmonic in D. [10]

QUESTION B4 [20 Marks]

a) Evaluate
$$\int_C \frac{e^z - 4z^2}{(z-2)^4} dz$$
 if C is [10]

- i) the circle |z+3|=9
- ii) the circle |z 8 4i| = 4
- b) Let f(z) be analytic in the simply connected domain D containing the circular contour C of radius ρ centered at z_0 . If at each point z on C, $|f(z)| \leq \Gamma$, prove that [10]

$$|f^{(n)}(z_0)| \le \frac{n!\Gamma}{\rho^n}, \quad \text{for,} \quad n = 1, 2, \cdots.$$

QUESTION B5 [20 Marks]

- a) Determine if the sequence $z_n = \frac{7}{n^8} 6i$ for $n = 1, 2, \cdots$ converges or diverges. [4]
- b) Show that $\sinh(z) = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}$. [8]
- c) Find the Laurent series that represents the function $f(z) = \frac{z}{(2-z)(z-1)}$ in the domain 1 < |z| < 2.

QUESTION B6 [20 Marks]

- a) Consider the function $f(z) = \frac{z^2+4}{z^2-2z+5}$.
 - i) Locate and classify all singularities. [4]
 - ii) Find the value of the residue at each singularity. [2]
 - iii) Hence evaluate $\int_C \frac{z^2+4}{z^2-2z+5}$, where C is the contour defined by |z-1|=4 [6]
- b) Using Cauchy's Residue Theorem, evaluate

$$\int_{-\infty}^{\infty} \frac{dx}{x^2 + 2x + 2}.$$

8