University of Eswatini

RE-SIT EXAMINATION, 2018/2019

BASS, B.Ed (Sec.), B.Sc.

Title of Paper : Dynamics I

Course Number : MAT256/M255

Time Allowed : Three (3) Hours

Instructions

1. This paper consists of SEVEN (7) questions in TWO sections.

- 2. Section A consists of TWO questions and is **COMPULSORY**. Each question is worth 20%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, A2, B3 B7) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PER-MISSION HAS BEEN GIVEN BY THE INVIGILATOR.

(5)

COURSE NAME AND CODE: MAT256/M255 Dynamics I

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [20 Marks]

- (a) Let $\mathbf{a} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\mathbf{b} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$. Find a unit vector perpendicular to both $\mathbf{c} = \mathbf{a} \mathbf{b}$ and $\mathbf{d} = \mathbf{a} + \mathbf{b}$ (5)
- (b) Let $\mathbf{r}(t) = \langle 3\cos t, 4t, 3\sin t \rangle$ define a space curve C. Find the unit normal to the curve at the point (3,0,0).
- (c) Show that if $|\mathbf{r}(t)| = c$, where c is a constant, then $\mathbf{r}(t)$ and $\mathbf{r}'(t)$ are perpendicular. (5)
- (d) A particle has acceleration given by $\mathbf{a}(t) = 2t\hat{\mathbf{i}} + \sin t\hat{\mathbf{j}} + \cos 2t\hat{\mathbf{k}}$. Given that $\mathbf{v}(0) = \hat{\mathbf{i}}$ and $\mathbf{r}(0) = \hat{\mathbf{j}}$, find the position vector of the particle at any time t.

QUESTION A2 [20 Marks]

(a) A particle moves along the space curve defined by

$$\mathbf{r}(t) = 3\cos 2t\hat{\mathbf{i}} + 3\sin 2t\hat{\mathbf{j}} + (8t - 4)\hat{\mathbf{k}}.$$

Find

iv. the curvature
$$\kappa$$
 and the radius of curvature R , (3)

v. the unit principal normal
$$\hat{N}$$
, (2)

(b) At time t, the speed v of a particle moving in a straight line is given by

$$v = \frac{(9 - t^4)x^3}{3t^4}, \quad t > 0$$

where x is the distance covered after time t. If at time t = 1, the particle has covered a distance x = 5/3, find an expression for x in terms of t. (6)

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

(a) Particle A, initially at rest, is projected from the origin with acceleration $\frac{\sqrt{3}}{2}\hat{\mathbf{i}} + \frac{1}{2}\hat{\mathbf{j}}$. At the same instant, particle B at rest at the point $(\sqrt{3},0)$, is projected with acceleration 12ĵ. Show that the particles collide and find the time of collision.

(8)

- (b) A body is projected vertically upward with speed v_0 . Find the greatest height reached and the time taken to reach this height. [Leave your answer in terms of q]. (6)
- (c) A body of mass 2 kg falls from rest from a height 5 metres above the ground. Assuming $g = 10 \text{ m/s}^2$, find
 - i. the time it hits the ground, (4)
 - ii. its speed when it hits the ground. (2)

QUESTION B4 [20 Marks]

(a) The acceleration (in m/s^2) of a particle is given by

$$a = \frac{10}{4 + 5\sqrt{v}},$$

where v is its speed (in m/s) at a distance x metres from the origin. If the particle started from rest at the origin, determine how far it has travelled when it reaches a speed of 16 m/s.

(8)

(b) At time t=0 a particle of mass 2 kg falling under gravity is positioned at the origin and is travelling vertically downward with speed 10 m/s. Suppose that the resisting force at speed v has magnitude 0.5v Newtons. Assuming $g = 10 \text{ m/s}^2$, find the speed v(t) and the distance travelled z(t) at any time t.

(12)

QUESTION B5 [20 Marks]

- (a) A projectile is fired with an initial speed of v_0 at angle of elevation α . Find (in terms of α , v_0 and g)
 - i. the velocity vector of the projectile at any time t, (3)
 - ii. the position vector of the projectile at any time t, (3)
 - iii. the range of the projectile, (3)
 - iv. the maximum height reached, (3)
 - v. the value of α that will maximise the range of the projectile. (3)
- (b) Suppose an object of mass m has position vector given by

$$\mathbf{r}(t) = a\cos\omega t + b\sin\omega t,$$

where a, b, and ω are constants. Find the force acting on the object and show that the force is directed towards the origin. (5)

QUESTION B6 [20 Marks]

(a) A train takes a time T to complete a journey from rest to rest. It accelerates uniformly from rest for a time pT and retards uniformly to rest at the end of the journey for a time qT. During the intermediate time, it travels uniformly with speed v. Prove that the average speed for the journey is

$$\frac{1}{2}v(2-p-q).$$

(8)

- (b) Two points A and B are at a distance d apart. A particle starts from A and moves in the direction \overrightarrow{AB} with initial velocity u and uniform acceleration a. At the same instant, a second particle starts from B and moves in the direction \overrightarrow{BA} with initial velocity 2u and retardation a.
 - i. Show that the particles collide at time $\frac{d}{3u}$ after the start of motion. (8)
 - ii. Show that if the particles collide before the second particle returns to B, then ad < 12u. (4)

(5)

QUESTION B7 [20 Marks]

(a) Suppose one end of a spring with spring constant k and equilibrium length l is attached to a wall and an object of mass m is attached at the other end. Assume that the object moves in a straight line along a horizontal frictionless surface. Let the origin, O, be the position of the object at equilibrium position. Let the positive x direction be the direction when the spring is stretched, so that x < 0 means the spring is compressed. Suppose at time t = 0, $x(0) = x_0 > 0$ and the speed of the object is $v(0) = v_0$ away from O.

Show that the position x of the object at any time t is given by

$$x(t) = x_0 \cos \omega_0 t + \frac{v_0}{\omega_0} \sin \omega_0 t,$$

where
$$\omega_0 = \sqrt{k/m}$$
. (10)

- (b) An object of mass 2 kg is attached to a spring with spring constant k = 0.125 kg per square second and is free to slide along a horizontal frictionless surface. At t = 0 the spring-object system is stretched an amount $x_0 = 0.1$ metres from the equilibrium position and is released from rest. Find the period of oscillation of the object and find its velocity when it first returns to the equilibrium position.
- (c) A simple pendulum of length 0.8 m with a block of mass 5 kg has a maximum speed of 1.2 m/s. Find the maximum height reached by the block. (Assume $g = 10 \text{ m/s}^2$.)

End of Examination Paper_____