University of Eswatini

RESIT EXAMINATION, 2018/2019

BASS, B.Ed (Sec.), B.Sc.

Title of Paper

: Foundations of Mathematics

Course Number : MAT231/M231

Time Allowed

: Three (3) Hours

Instructions

- 1. This paper consists of SEVEN (7) questions in TWO sections.
- 2. Section A is COMPULSORY and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, A2, B2, ..., B6) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.

Special Requirements: NONE

This examination paper should not be opened until permission has BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [20 Marks]

- (a) Determine whether or not the given sentence is a proposition. If it is a proposition, give its truth value. (6)
 - i. $\exists x \in \mathbb{R}, x^2 2x + 1 > 0$.
- iii. Mbabane is a city in Eswatini.
- ii. Are you at home now?
- iv. *x* is a real number.
- (b) Give clear definitions of each of the following
 - i. An equivalence relation on a set A?

(4)

(2)

- ii. An *injective function* from a set *A* into a set *B*.
- iii. A surjective function from a set A into a set B. (2)
- (c) Write down (i.) the inverse, (ii.) the converse, and (iii.) the contrapositive of the following statement.

$$\neg (p \lor q) \to r.$$

(6)

QUESTION A2 [20 Marks]

(a) Let \mathbb{R}^+ be the set of positive real numbers. True or False? (Explain your answer).

 $\forall x \in \mathbb{R}^+, x > \frac{1}{x}.$

(b) Write down the negation of the proposition

 $\forall x \in \mathbb{R}$, if x(x+1) > 0, then x > 0 or x > -1.

(5)

(6)

(c) Use a truth table to determine whether or not the following argument is valid.

 $\begin{array}{c}
p \to q \\
q \to r \\
\vdots \quad p \to r
\end{array}$

(d) Without using truth tables, show that $\neg p \lor (p \land q) \equiv p \rightarrow q$. (6)

_END OF SECTION A – TURN OVER

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B3 [20 Marks]

- (a) Prove: For all integers n, if n is odd, then n^2 is odd. (4)
- (b) Prove: For an integer n, if $n^3 + 5$ is odd, then n is even. (5)
- (c) Prove: If n is an odd integer, then there exists an integer m such that $n^2 = 8m + 1$. (7)
- (d) Let $a, b, c \in \mathbb{Z}$, $a \neq 0, b \neq 0$. Prove: If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$. (4)

QUESTION B4 [20 Marks]

- (a) i. Define a partition of a set A. (2)
 - ii. Let $A = \{1, 2, 3, 4, 5, 6\}, A_1 = \{1\}, A_2 = \{2, 3\}, A_3 = \{4, 5\}.$ Does $\{A_1, A_2, A_3\}$ form a partition of A? (2)
- (b) Let A and B be sets in a universal set U. Prove

i. If
$$A \subseteq B$$
, then $A \cup B = B$. (5)

ii.
$$(A \setminus B) \cap B = \emptyset$$
. (5)

ii.
$$(A \cap B)^c = A^c \cup B^c$$
. (6)

QUESTION B5 [20 Marks]

- (a) Use mathematical induction to prove that $2^{3n} 1$ is divisible by 7 for all integers $n \ge 1$.
- (b) Use strong induction to prove: Any integer n > 1 is either a prime number or can be written as a product of prime numbers. (7)
- (c) Find a solution to the sequence recursively defined by

$$a_1 = 1$$
, $a_2 = 2$, $a_n = 2a_{n-1} + 3a_{n-2}$, $n \ge 3$.

(6)

(4)

(4)

QUESTION B6 [20 Marks]

- (a) Let $A = \{a, b, c, d\}$ and $B = \{1, 2, 3, 4, 5, 6, 7\}$. Which of the following relations from A into B are functions? Explain your answer. (4)
 - i. $\{(a,4), (d,3), (b,5), (c,2), (a,6)\}$
 - iii. $\{(a,1), (b,1), (c,1), (d,1)\}.$
- (b) Find the domain and range of each function below.
 - i. $f(x) = \ln |x|$.

- ii. $g(x) = \sqrt{3 x}$.
- (c) Let $f: \mathbb{R} \to \mathbb{R}$ and $g: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^3 1$ and $g(x) = \sqrt[3]{x+1}$. Find $(f \circ g)(x)$ and $(g \circ f)(x)$.
- (d) Let $f : \mathbb{R} \to \mathbb{Z}$ be defined by $f(x) = \lfloor x \rfloor$ (the greatest integer less than or equal to x). Show that f is not injective. (2)
- (e) Let $f: A \to B$ and $g: B \to C$ be injective functions. Show that $g \circ f: A \to C$ is also injective. (6)

QUESTION B7 [20 Marks]

(a) Let $A = \{2,4\}$, $B = \{6,8,10\}$. Define the binary relations R and S from A to B as follows:

 $(x,y) \in R$ if and only if $x \mid y$ $(x,y) \in S$ if and only if y - 4 = x.

List the elements of *R* and *S*.

- (b) Let $A = \{1, 2, 3, 4\}$ and define a relation R on A by xRy if and only if $x \le y$. Find the domain and range of R. (2)
- (c) Define a relation R on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ as follows: (m,n)R(m',n') if and only if mn' = nm'. Show that R is an equivalence relation on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$.
- (d) Let \mathscr{A} be a collection of sets. Let R be the relation on \mathscr{A} defined as follows: For $A, B \in \mathscr{A}$, $(A, B) \in R$ if and only if $A \subseteq B$. Show that R is a partial order on \mathscr{A} .