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Instructions

6.
7.

. This paper consists of SIX (6) questions in TWO sections.
. Section A is COMPULSORY and is worth 40%. Answer ALL questions

in this section.

. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE

(3) questions in this section.

. Show all your working.

. Start each new major question (Al, B2 — B6) on a new page and clearly

indicate the question number at the top of the page.
You can answer questions in any order.

Indicate your program next to your student ID.
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SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [{0 Marks]

a) i) Determine whether the vectors oy = (4,1,-2), T, = (=3,0,1), and 73 = (1,2,1) are

linearly independent or linearly dependent. 4]
ii) Let P,, be the vector space of n X n matrices. Determine whether the transformation
T(A) = AT — 3A is linear transformation or not. [4]
b) i) Find |A| and |A7], given that 4]
T 6 1 -4
0 -3 0 7
A=
0 0 2 8
0 0 0 &
ii) If C is a 4 by 4 matrix, and |C| = 3, determine |4C'. [2]
¢} i} Determine the characteristic polynomial of (2]
4 0 0
A=13 0 0
-4 0 -3
ii) Hence find the corresponding eigenvalues and Figenvectors. 6]
d) i) Express [4]
-1 1
O =
o o
as a product of elementary matrices.
ii) Find 24®% — 37, where 4]
-2 0 0
A=10 -1 0
0 0 2

e) Solve the following system, where a, and b are constants using Gauss-Jordan elimination. {4]

2331 + &g = 18
3.’131 -+ 63.’,'2 =0
f) Verify the Cayley-Hamilton theorem for the matrix 6]

A= 4
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SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks)

a) Solve the system of equations [12]

I1—2$2+5.’L‘3ﬁ2
da; — hag + 8wy =3
—321 + 3z — 323 = —1.

b) If A is an invertible matrix, prove that AT is also invertible and (A™1)T = (A7)~ 8]

QUESTION B3 [20 Marks)

a) Suppose that det(4~!) = —10. Find det{A). : [5]
b} Consider the linear system of equations

k$2+$3:1
14+ xz+az3=1
21+ 239 + (1 + k)zz = 2.

i) Determine the value(s) of k for which the system has infinitely many solutions.  [5]

ii) Find the solution(s) of the system for the value(s) of k. [10]

QUESTION B4 [20 Marks]

a) State Cayley-Hamilton theorem. 5]
b) Find bases for the eigenspaces of the matrix [10]
2 1
A=
0 -2
c¢) Consider the matrix
2 0
A=10 -1 0
0 0
i) Find the eigenvalues of the matrix A. [3]

ii) Is the matrix A invertible or not? (2]
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QUESTION B5 {20 Marks)

a) Let V,, be the vector space of n x n matrices. Determine whether the transformation

T(A) = det(A) is linear.
b) Prove that If T": V' — W is a linear transformation, then:
i) T(0)=0
i) T(u) = —T(u)
iii) T(u—v) =T(u} - T(v).

QUESTION B6 [20 Marks]

a} Determine whether the polynomials
p; =2-2z, p,= 10+ 6z — 4z’ p; = 2 + 6z — 22°
are linearly dependent or linearly independent in Py,

b) Do the vectors vi = (1,2,1), vo=(2,9,0), vs=(3,3,4), form a basis for R*?

END oF EXAMINATION PAPER
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