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7.

. This paper consists of SIX (6) questions in TWO sections.
. Section A is COMPULSORY and is worth 40%. Answer ALL questions

in this section.

. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE

(3) questions in this section.

. Show all your working.

. Start each new major question (Al, B2 — B6) on a new page and clearly

indicate the question number at the top of the page.
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SECTION A [{0 Marks]: ANSWER ALL QUESTIONS

QUESTION A1l [40 Marks)

a) i} Express [6]
1 2
C =
o
as a product of elementary matrices.
ii) Find A7, where 2]
2 0 0
A= -1 0
g 0
b) i) Find |Af and [A7!], given that [4]
2 4 46
0 -1 0 9
A=
0 0 15
0 0 05
ii) If det(A) = 0, what can you conclude about the solutions of the linear system of
equations Ax = b? _ (2]
¢) i) Determine the characteristic polynomial of 4]
23] 0 0
A= 3 Qin 0
-4 0 g
ii) Hence find the corresponding eigenvalues. 4]

d) Define the following terms
i) linearly independent. [2]
ii) vector space. [4]
ii) Are the vectors 7; = (2,5,8), # = (1,1,1}, and ¥s = (4, 2,0} linearly independent? [4]
e} i) Solve the system using Gauss-Jordan elimination, where a, and b are constants. [6]
201 + 20 = a

3z, +06x, =0

i) Solve the system for a = 1, and b = 0. [2]
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SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks)

a) What conditions must by, by and bs; satisfy in order for the system of equations to be
consistent? , [10]

Ty - 25132 + 513-3 = b]
4:151 - 5.’1’12 -+ 8373 = b2
~3x1 + 319 — 323 = ba.
b) Prove the following theovems

i) If A is an invertible matrix, prove that A” is also invertible and (AT = (ATYL. [6]

i) Every elementary matrix is invertible and the inverse is also an elementary matrix. 4]

QUESTION B3 [20 Marks)

[ . e — o 1
a) If A is invertible, then det(A™!) = 5. 5]
b) Consider the linear system of equations

koo + a3 = 1

21+ To 4+ 23 = 1
i) By analyzing the determinant of the coefficient matrix, determine the value of k for
which the system have exactly one solution. (5]
ii) Find the solution{s) of the system for k = 1. [10]

QUESTION B4 [20 Marks]

a) Verify Cayley-Hamilton theorem for [6]
o1 oo
A=10 0 1
-3 3
b) Find bases for the eigenspaces of the matrix 6]
| 3 0
A=l 7
8 -1

¢) Prove that a square matrix A is invertible if and only if A = 0 is not an eigenvalue of A. [§]
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QUESTION B5 [20 Marks)

a) Let My, be the vector space of n X n matrices. In each part determine whether the trans-
formation is linear.

i) Ty(A) = A" [4]

i) Ty(A) = det(A). (4]
b) Prove that If T: V — W is a linear transformation, then:

i) T(0) =0 2]

i) T(u—v) =T(u) —T(v). [4]
¢) Define a linear transformation T from V to W. 6]

QUESTION Bé6 [20 Marks)

a) Let S = {vi,vy, -V, } be a set of vectors in R*. Prove that if » > n, then 5 is linearly
dependent. [6]

b) Determine whether the polynomials
p,=1-2z p,=5+3x -2 p;=1+3z—2a’
are linearly dependent or linearly independent in IPs. [7]

¢} Show that the vectors vi = {1,2,1), vo =(2,9,0), vz =(3,3,4), form a basis for R3. [7]

END oF EXAMINATION PAPER




