University of eSwatini

Supplementary/Resit Examination, July 2019

B.Sc, BASS, B.Ed, B.Eng

Title of Paper

: Ordinary Differential Equations

Course Code

: MAT216/M213

Time Allowed

: Three (3) Hours

Instructions

1. This paper consists of TWO sections.

a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.

b. SECTION B: 60 MARKS

Answer ANY THREE questions.

Submit solutions to ONLY THREE questions in Section B.

- 2. Each question in Section B is worth 20%.
- 3. Show all your working.
- 4. Special requirements: None

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section A: Answer ALL Questions

A1. a. Identify the non-linear term in each of the following non-linear ODEs.

i.
$$\frac{dy(x)}{dx} - \cos(y(x)) = \sin(x)$$
 [1]

ii.
$$\frac{d^2x(t)}{dt^2} - 5\frac{dx(t)}{dt}(x(t)) = e^t$$
 [1]

iii.
$$(1+x^2)\frac{d^2y(x)}{dx^2} - \left|\frac{dy(x)}{dx}\right| = 0$$
 [1]

b. Find the particular solution of the following IVP given that its general solution is $y^2 = 1 + Ae^{x^2}$.

$$yy' - xy^2 + x = 0$$
, $y(-1) = -1$.

[4]

- c. Solve the initial value problem, $y' + \left(\frac{1+x}{x}\right)y = 0$, y(1) = 1. [5]
- **d.** Verify that $y_1 = e^x \cos x$ and $y_2 = e^x \sin x$ are solutions of

$$y'' - 2y' + 2y = 0$$
, on $(-\infty, \infty)$.

[5]

e. Find the particular solution for the IVP,

$$y'' - 3y' + 2y = 0$$
, $y(0) = -2$, $y'(0) = 2$.

[7]

f. Find the general solution of the ODE,

$$y^{iv} + y''' - 7y'' - y' + 6y = 0.$$

6

g. Find the inverse Laplace transform of

$$F(s) = \frac{2+3s}{s^2 - 3s + 2.}$$

5

h. Reduce the following ODE into a system of first order ODEs, leaving your answer in matrix form.

$$\ddot{y} + 2\dot{y} - 3y = 0.$$

[5]

Section B: Answer ANY 3 Questions

B2. (a) Confirm that

$$(4xy^2 + 3y)dx + (3x^2y + 2x)dy = 0$$

has an integrating factor of the form $\mu = x^m y^n$. Determine m and n, hence solve the ODE. [13]

(b) Solve the Bernoulli equation

$$y' + y = y^2 e^x.$$

[7]

B3. (a) Use the method of undetermined coefficients to find the general solution of

$$y'' + 2y' + y = 8x^2 \cos x - 4x \sin x.$$

[15]

- (b) Let $\phi_1(x)$ and $\phi_2(x)$ be any two differentiable functions. Prove that if the Wron-skian vanishes, then one function is a constant multiple of the other. [5]
- B4. Suppose

$$y = \sum_{n=0}^{\infty} a_n (x-1)^n$$

on an open interval I that contains $x_0 = 1$. Express the function

$$(1+x)y'' + 2(x-1)^2y' + 3y$$

as a power series in (x-1) on I. Find the recurrence relation.

[20]

B5. (a) Find the Laplace transform of

$$f(t) = t \sinh(2t).$$

[5]

(b) Solve the following IVP using Laplace transform.

$$y'' - 3y' + 2y = e^{3t}, \quad y(0) = 1, \quad y'(0) = -4.$$

[15]

B6. (a) Reduce the following ODE into a system of first order ODEs, leaving your answer in matrix form.

$$3\ddot{y} + 5\dot{y} + 2y = 0.$$

[5]

(b) Find the general solution of

$$\frac{d\mathbf{X}}{dt} = \begin{pmatrix} \dot{x}(t) \\ \dot{y}(t) \end{pmatrix} = A\mathbf{X}, \text{ where, } A = \begin{pmatrix} 4 & -3 \\ 2 & -1 \end{pmatrix}.$$

[15]

END OF EXAMINATION

Table 1: Elementary Laplace Transforms

$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$
1	$F(s) = \mathcal{L}\{f(t)\}$ $\frac{1}{s}, s > 0.$
e^{at}	$\frac{1}{s-a}$, $s>a$.
t^n , $n = positive integer$	$\frac{n!}{s^{n+1}}, s > 0.$
$t^p, p>-1$	$\frac{\Gamma(p+1)}{s^{p+1}}, s>0.$
$\sin at$	$\frac{a}{s^2 + a^2}, s > 0.$
$\cos at$	$\frac{s}{s^2 + a^2}, s > 0.$
$\sinh at$	$\frac{a}{s^2 - a^2}, s > a .$
$\cosh at$	$\frac{s}{s^2 - a^2}, s > a .$
$e^{at}\sin bt$	$\frac{b}{(s-a)^2+b^2}, s>a.$
$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}, s>a.$
$t^n e^{at}$, $n = \text{positive integer}$	$\frac{n!}{(s-a)^{n+1}}, s > a.$
$f^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - \dots - f^{(n-1)}(0)$
$(-t)^n f(t)$	$F^{(n)}(s)$