University of Eswatini

Final Examination, May 2019

B.Sc II, B.A.S.S II, B.Ed II, B.Eng II

Title of Paper

: Calculus II

Course Code

: MAT212/M212

Time Allowed

: Three (3) Hours

Instructions

1. This paper consists of TWO sections.

a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.

b. SECTION B: 60 MARKS

Answer ANY THREE questions.

Submit solutions to ONLY THREE questions in Section B.

- 2. Each question in Section B is worth 20%.
- 3. Show all your working.
- 4. Special requirements: None.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A: ANSWER ALL QUESTIONS

Question 1

- (a) (i) Sketch the curve described by the parametric equations $x=t^2-4,\ y=\frac{t}{2}, -2\leq t\leq 3. \tag{4}$
 - (ii) For the curve given by $x = \sqrt{t}$ and $y = \frac{1}{4}(t^2 4)$, $t \ge 0$ find the slope and concavity at the point (2, 3).
 - (iii) Skecth the polar curve $r = \sec \theta$ also find a Cartesian equation for this curve. [4]
- (b) (i) Find $\lim_{(x,y)\to(1,2)} \frac{5x^2y}{x^2+y^2}$. [4]
 - (ii) Find the total differential of the function $z = 2x \sin y 3x^2y^2$. [4]
 - (iii) Find the directional derivative of the function $f(x,y) = 4 x^2 \frac{1}{4}y^2 \text{ at } (1,2) \text{ in the direction of the vector } \mathbf{v} = (\cos\frac{\pi}{3})\mathbf{i} + (\sin\frac{\pi}{3})\mathbf{j}.$ [5]
- (c) (i) Calculate the double integral $\iint\limits_R \sin(x-y)dA, R = \{(x,y) : 0 \le x \le \pi/2, 0 \le y \le \pi/2\}.$ [5]
 - (ii) Evaluate the iterated integral $\int_{-3}^{3} \int_{0}^{\sqrt{9-x^2}} \sin(x^2 + y^2) dy dx$ by converting to polar coordinates. [5]
 - (iii) Evaluate the iterated integral $\int_0^{\pi/2} \int_0^y \int_0^x \cos(x+y+z) dz dx dy$. [5]

SECTION B: ANSWER ANY 3 QUESTIONS

Question 2

- (a) Find the exact length of the polar curve $r=\theta^2, \ \ 0\leq \theta \leq 2\pi. \eqno{[10]}$
- (b) Find the area of the region that lies inside the circle $r = 3 \sin \theta$ and outside the cardioid $r = 1 + \sin \theta$. [10]

Question 3

- (a) Find the horizontal and vertical tangent lines of $r = \sin \theta$, where $0 \le \theta < \pi$. [10]
- (b) Sketch the graph of $r = 2\cos 3\theta$. [10]

Question 4

- (a) Find the limit, if it exists, or show that the limit does not exist for $\lim_{(x,y)\to(0,0)} \frac{y^2 \sin^2 x}{x^4 + y^4}.$ [10]
- (b) Find the local maximum and minimum values and saddle point(s), if any, of the function

$$f(x,y) = y^3 + 3x^2y - 6x^2 - 6y^2 + 2$$
 [10]

Question 5

(a) Use the Chain Rule to find the indicated partial derivatives.

$$z = x^4 + x^2y, \ x = s + 2t - u, y = stu^2$$

$$\frac{\partial z}{\partial s}, \frac{\partial z}{\partial t}, \frac{\partial z}{\partial u} \text{ when } s = 4, t = 2, u = 1$$
[10]

(b) Find the equation of the tangent plane to the hyperboloid $z^2 - 2x^2 - 2y^2 = 12$ at the point (1, -1, 4). [10]

Question 6

- (a) Find the mass and center of mass of a triangular lamina with vertices (0,0),(1,0) and (0,2) if the density function is $\rho(x,y)=1+3x+y$. [10]
- (b) Let R be the annular region lying between the two circles $x^2+y^2=1$ and $x^2+y^2=5$. Evaluate the integral $\int \int_R (x^2+y) dA.$ [10]

End of Examination Paper