University of ESwatini

Supplementary/Resit Examination, January 2019

B.A.S.S., B.Sc, B.Eng, B.Ed

Title of Paper

: Calculus I

Course Number

: M211/MAT211

Time Allowed

: Three (3) Hours

Instructions

1. This paper consists of TWO sections.

a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.

b. SECTION B: 60 MARKS
Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.

- 2. Begin each major question (A1, B2, etc) on a new page.
- 3. Each question in Section B is worth 20%.
- 4. Show all your working.
- 5. Non programmable calculators may be used (unless otherwise stated).
- 6. Special requirements: None.
- 7. Indicate your program next to your student ID number.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section A: Answer All Questions

i. State Rolle's Theorem.

A1.

(a)

- - ii. Consider the function and interval, $f(x) = \left| \frac{1}{x} \right|$, [-1, 1]. Explain why Rolle's Theorem does not apply to the function even though there exists a and b such that f(a) = f(b). [4]

[3]

- iii. Find and classify all critical points of the function, $y = -2x^3 + 6x^2 3$.
- iv. Use L'Hôpital's Rule to show that $\lim_{x\to 0^+} \sqrt{x} \ln x = 0$. [3]
- v. Express the function $f(x) = \frac{2x^2 4x}{x+1}$ as a sum of its quotient and remainder, hence show that the graph of f(x) has a slant asymptote at the line 2x-6. [4]
- (b) Set up the integral for finding the area of the region bounded by the graphs of $y_1 = 3(x^3 - x)$ and $y_2 = 0$. DO NOT EVALUATE.
- i. Simplify the ratio of factorials, $\frac{(2n-1)!}{(2n+1)!}$. [3]
 - ii. List the first five terms of the sequence $a_n = \frac{3n}{n+4}$. [3]
 - iii. In your own words, define a monotonic sequence. [3]
 - iv. Define a p—series and state the requirements for its convergence. [4]
 - v. State the Ratio Test for series absolute convergence. [3]

Section B: Answer Three(3) Questions Only

B2. Consider the function $f(x) = \frac{x^2 + 4}{2x}$. (a) Identify the domain of f(x). [1] (b) Find and classify all critical points of f. [4] (c) Find intervals where f is increasing and where it is decreasing. [4](d) Find possible points of inflection, if any occur and determine concavity of the graph. [3] (e) Identify any asymptotes that may exist. [3] (f) Sketch the graph of f labelling all major points found above including intercepts if any occur. **B**3. (a) Sketch and find the area of the region bounded by the graphs of $x = y^3$ and $x = y^2$ [10]

B4.

(a) Find the arc length of the graph of $x = \frac{1}{3}(y^2 + 2)^{\frac{3}{2}}$ over the interval $0 \le y \le 4$.

(b) Sketch the region bounded by the curves $y = x^2 - 4x + 5$, x = 1, x = 4, and the x-axis. Use the **Disk Method** to determine the volume of the solid obtained by

[10]

rotating the region about the x-axis.

(b) Find the area of the surface generated by revolving the curve, $y = \frac{x^3}{9}$, $0 \le x \le 2$, about the x-axis. [10]

B5.

- (a) Consider the sequence and its first term, $a_{n+1} = \frac{n \ a_n}{n+1}$, $a_1 = -2$. Find the values of a_2 , a_3 and a_4 .
- (b) Determine whether the sequence with the given *n*th term is monotonic and whether it is bounded.

i.
$$a_n = 4 - \frac{1}{n}$$
. [3]

- ii. $a_n = n e^{-\frac{n}{2}}$. [4]
- (c) Write an expression for the *n*th term of the sequence $1, -4, 9, -16, 25, \ldots$ [3]
- (d) Determine the convergence or divergence of the sequence $a_n = \left(1 \frac{1}{n}\right)^n$.

 If the sequence converges, find its limit. [7]

B6.

- (a) Express the repeating decimal 5.23232323... as a ratio of two integers. [5]
- (b) Using a Test of your choice, show that the infinite series $\sum_{n=1}^{\infty} \frac{n^2}{n^2+1}$, diverges. [5]
- (c) Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{(4x)^n}{n^2}$. [5]
- (d) Find the 4-th Maclaurin polynomial for the function $f(x) = e^{-\frac{x}{2}}$ [5]

END OF EXAMINATION