University of Eswatini

Resit Examination – July 2019

BSc I, BASS I, BEng I, BEd I, BSc IT I, BSc Comp Sci Ed I

Title of Paper

: Introduction to Calculus

Course Number:

MAT112

Time Allowed

: Three (3) hours

Instructions:

1. This paper consists of 2 sections.

2. Answer ALL questions in Section A.

3. Answer ANY 3 questions in Section B.

4. Show all your working.

5. Begin each question on a new page.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section A Answer ALL Questions in this section

A.1 a. Give a concise definition of each term

- [2 marks] i. Indeterminate form
- [2 marks] ii. Inflexion point

b. Evaluate

i.
$$\lim_{x \to 2} \frac{3x^2 - 11x - 4}{2x^2 - 5x - 12}$$
 [4 marks]
ii. $\lim_{x \to \infty} \frac{3x^2 - x - 10}{2x^2 + 3x - 14}$ [4 marks]

ii.
$$\lim_{x \to \infty} \frac{3x^2 - x - 10}{2x^2 + 3x - 14}$$
 [4 marks]

- **c.** Find $\frac{\mathrm{d}f}{\mathrm{d}x}$ using the *limit definition* for f(x) = 7 4x. [4 marks]
- **d.** Find y' given

i.
$$y = \ln(\sec x + \tan x)$$
 [4 marks]

ii.
$$y = \frac{x^2}{x^2 - e^{-2x}}$$
 [4 marks]

iii.
$$9x^2 - 12xy + 4y^2 = 10$$
, where $y = y(x)$. [4 marks]

e. Evaluate

i.
$$\int \left(\sinh 2x - \frac{8}{x^3} + \frac{8}{x} - \frac{8}{e^{2x}} \right) dx$$
 [4 marks]

ii.
$$\int 8xe^{-2x} dx$$
 [4 marks]
iii. $\int 8xe^{-2x^2} dx$ [4 marks]

iii.
$$\int 8xe^{-2x^2} dx$$
 [4 marks]

Section B

Answer ANY Three (3) Questions in this section

B.2 a. Evaluate

i. $\lim_{x \to 0} \frac{x \sin x}{1 - \cos x}$

[5 marks]

ii. $\lim_{x \to \infty} \left(\frac{x^2}{x+1} - \frac{x^2}{x-1} \right)$

[5 marks]

b. Use the *limit definition* to find $\frac{\mathrm{d}f}{\mathrm{d}x}$ for

$$f(x) = \frac{1}{1-x}$$

[10 marks].

B.3 a. Find y' given that

$$y = \ln\left(\frac{e^x}{1 - e^x}\right).$$

[5 marks]

b. Use Leibnitz's rule to evaluate

$$\frac{\mathrm{d}^4}{\mathrm{d}x^4} \Big[\big(x^3 - 2x \big) e^{-2x} \Big].$$

[6 marks]

c. Derive the formula

$$\frac{\mathrm{d}}{\mathrm{d}x}\big[\sin^{-1}u(x)\big] = \frac{1}{\sqrt{1-u^2}}\frac{\mathrm{d}u}{\mathrm{d}x}.$$

[4 marks]

Hence, or otherwise, find y' for

$$y = \sin^{-1}(2x - 1)$$

and simplify.

[5 marks]

B.4 a. Consider the function

$$y = 10 + 8x^2 - x^4.$$

i. Find the equation of the tangent line at x = -1.

[4 marks]

- ii. Find the stationary point(s) of y and determine the nature of each. [4 marks]
- iii. Find the inflexion point(s) of y

[3 marks]

iv. Make a sketch of the graph of y.

[4 marks]

b. A rectangle has two of its vertices on the x-axis and the other two on the parabola $y=27-3x^2$. Find the dimensions of such a rectangle with the largest area. [5 marks]

B.5 Evaluate

a.
$$\int \tan^{-1} x dx$$

[7 marks]

b.
$$\int_0^{\frac{\pi}{4}} \cos \theta \sin^3 \theta \, d\theta$$

[5 marks]

c.
$$\int_{2}^{5} \frac{\mathrm{d}x}{x^2 - 4x + 13}$$

[8 marks]

- **B.6** a. Find the *exact* area of the region bounded by the parabola $y = 2x^2 8$ and the straight line x + y + 2 = 0. [10 marks]
 - b. Use calculus methods to derive the formula $A=\pi r^2$ for the area of the circle $x^2+y^2=r^2$. [10 marks]

END OF EXAMINATION_