University of Swaziland

Final Examination – December 2018

BSc I, BEng I, BEd I, BASS I, BSc IT I, BSc Comp Sci Ed I

Title of Paper

: Algebra, Trigonometry and Analytic Geometry

Course Number: MAT111

Time Allowed

: Three (3) hours

Instructions:

1. This paper consists of 2 sections.

- 2. Answer ALL questions in Section A.
- 3. Answer ANY 3 (out of 5) questions in Section B.
- 4. Show all your working.
- 5. Begin each question on a new page.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

Section A Answer ALL Questions in this section

A.1 a. Given that

$$\frac{P(x)}{D(x)} = Q(x) \operatorname{rem} R(x),$$

where P, D, Q and R are all polynomials,

- i. state the *inequality* satisfied by the degrees of P, D and R [1 mark]
- ii. state the *equation* satisfied by the degrees of P, D and Q [1 mark]
- b. On the same coordinate axes, sketch the graphs of $y=e^x$, $y=\ln x$ and $x^2+y^2=4$. [3 marks]
- c. Without using a calculator, evaluate

i.
$$2\log_6 3 + \log_6 20 - \log_6 5$$
 [4 marks]

ii.
$$(\cos 255^0 - \sin 255^0)^2$$
 [4 marks]

d. Using a calculator, find the value of (correct to 2 d.p.)

$$4e^{2\pi} + \frac{\log_2 35 + \ln 20}{1 - \frac{\log 20}{2 - \log 40}}.$$
 [2 marks]

e. Find the value of

i.
$$\sum_{n=0}^{200} (7n+9)$$
 [4 marks]

ii.
$$5 + 10 + 20 + \dots + 1,310,720$$
 [4 marks]

f. Find the 8th term in the binomial expansion of

$$\left(x^2 + \frac{1}{x}\right)^{24}.$$
 [5 marks]

g. Given that i is the unit imaginary number, satisfying the property $i^2 = -1$, evaluate

$$\begin{vmatrix} 1 & 0 & i \\ -2i & 7i & 1 \\ 1 & 4 & -9i \end{vmatrix}.$$
 [6 marks]

h. Use synthetic division to find the quotient and remainder of

$$\frac{x^4 - 2x^2 + 3x - 9}{x + 2}.$$
 [6 marks]

Section B

Answer ANY 3 Questions in this section

B.1 a. Given the vectors $\mathbf{A} = 2\hat{\mathbf{i}} + 5\hat{\mathbf{j}} - 8\hat{\mathbf{k}}$ and $\mathbf{B} = 4\hat{\mathbf{i}} - 5\hat{\mathbf{k}}$, find

i. $A \cdot B$

[2 marks]

ii. $A \times B$

[4 marks]

iii. the angle between the vectors A and B (correct to 2 d.p.)

[4 marks]

b.

i. Find the quotient and remainder of

$$\frac{5x - 5x^3 + x^4 - 9}{x^2 - 3}.$$

[5 marks]

ii. Using the Rational Root Theorem, the Remainder Theorem and synthetic division, factorise

$$P(x) = 2x^3 + 3x^2 - 18x + 8.$$

[5 marks]

B.2 a. Express

$$2\ln\left(ab^2c^3\right) - \ln\left(a^2b^3c^6\right)$$

as a single logarithm with unit coefficient.

[3 marks]

b. Consider the function

$$y(t) = \frac{500e^{0.2t}}{4 + e^{0.2t}}.$$

i. Find the value of y(20) correct to 2 d.p.

[2 marks]

ii. Make t the subject of the formula.

[6 marks]

- iii. Hence, or otherwise, find the value of t (correct to 2 d.p.) when y=350. [2 marks]
- c. A parent opens a saving account for their child by making monthly deposits, beginning on 31 January 2018. The following table shows the first few deposits.

Month	Jan '18	Feb '18	March '18	April '18	May '18
Deposit (E)	200	210	220	230	240

If the deposits follow the trend shown above for 10 years, find

i. the monthly deposit on 31 December 2021

[2 marks]

ii. the month when the montly deposit will be E1,000

[2 marks]

iii. the total deposited in 10 years

[3 marks]

B.3 a. Consider the binomial expansion of

$$\left(x^3 - \frac{y^4}{x^2}\right)^{20}.$$

Find

i. the first 4 terms

[6 marks]

ii. the term involving x^{-20} .

[4 marks]

b. Use mathematical induction to prove the formula

$$\sum_{i=1}^{n} (7i - 3) = \frac{1}{2}n(7n + 1).$$

[10 marks]

B.4 a. Without using a calculator, find the exact value of

$$\cos 214^{\circ} \cos 334^{\circ} + \sin 214^{\circ} \sin 334^{\circ}$$
.

[3 marks]

b. Given that $\sin A = \frac{1}{2}$ while $\cos A < 0$, find the *exact* values of

i.
$$\cos A$$

[3 marks]

ii. $\cos 2A$

[4 marks]

c. Prove

$$1 - \frac{\sin^2 A}{1 + \cos A} = \cos A.$$

[5 marks]

d. Find the general solution (in radians) of

$$2\sin^2\theta + \cos\theta - 1 = 0.$$

[5 marks]

B.5 a. Evaluate

$$5 - 3i + \frac{10}{1 - 2i}.$$

[4 marks]

b. Consider the complex number

$$\Omega = 2i\sqrt{3} - 2.$$

i. Express Ω in polar form

[3 marks]

- ii. Use de Moivre's theorem to find Ω^8 , leaving your answer in the form a+ib. [3 marks]
- c. A circle is centred on the straight line 2x + 5y + 1 = 0, and passes through the points (2,3) and (-1,6).

i. Find the equation of the circle.

[7 marks]

ii. Find the equation of the tangent of the circle at (-1,6).

[3 marks]

END OF EXAMINATION