UNIVERSITY OF ESWATINI

Final Examination, May 2019

B.A.S.S., B.Comm, B. Ed, D.Comm(IDE)

Title of Paper

: Calculus for Business Studies

Course Code

: MAT108/MS102

Time Allowed

: Three (3) Hours

Instructions

1. This paper consists of TWO sections.

a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.

b. SECTION B: 60 MARKS
Answer ANY THREE questions.
Submit solutions to ONLY THREE questions in Section B.

- 2. Each question in Section B is worth 20%.
- 3. Show all your working.
- 4. Special requirements: None

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks]

a. Evaluate the limits:

(a)
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$
. [3]

(b)
$$\lim_{x \to 0} \frac{x^3 - 2x^2}{x^4 + 3x^2}$$
. [3]

(c)
$$\lim_{x \to \infty} \frac{2x+5}{1-12x}$$
. [2]

b. Differentiate;

(a)
$$y = (x^2 + 1)e^{x^2 + 1}$$
. [3]

(b)
$$y = \ln(x^2 - 3x + 2)$$
. [2]

(c)
$$y = \sin(4x^2 + 1)$$
. [2]

c. Find and classify all critical points of
$$f(x) = x^4 - 2x^2 + 2$$
. [6]

d. Find the equation of the tangent line to
$$y = 2x^3 + 3x + 1$$
 at $(1, 6)$. [4]

e. Find the equation of the curve that passes through (2, 3) if its slope is given by
$$\frac{dy}{dx} = 4x - 3$$
 for each x . [3]

f. Evaluate;

(a)
$$\int \left(2e^x + \frac{3}{x}\right) dx$$
 [2]

(b)
$$\int \left(\frac{3x^2}{x^3+1}\right) dx$$
 [3]

(c)
$$\int \cos(8x) dx$$
 [2]

g. Find the area of the region bounded by $y=x^2$, x=4 and the x-axis. [5]

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

a) Evaluate
$$\lim_{x\to 0} \frac{\sqrt{x+1}-1}{x}$$
. [10]

- b) Consider the function $f(x) = \frac{x^2 1}{x + 1}$.
 - i) Find and classify the point of discontinuity.
 - ii) Define f(x) at the point of discontinuity such that f(x) is extended to be continuous at the point of discontinuity. [7]

[3]

QUESTION B3 [20 Marks]

- a) Use the limit definition of the derivative to find f'(x) given that $f(x) = \frac{1}{x^2}$. [10]
- b) A manufacturer of note pads has determined that the cost of producing x note pads each week is given by $C(x) = 40 + 5x + \frac{x^2}{4}$.
 - i) Find the exact cost of producing the 21st note pad. [2]
 - ii) Find the marginal cost of producing the 21st note pad and show how the marginal cost closely approximates the cost in (i.) above. [8]

QUESTION B4 [20 Marks]

a) A computer firm is marketing a new computer model. It determines that in order to sell x computers, the price per computer must be p = 280 - 0.4x.

It also determines that the total cost of producing x computers is given by $C(x) = 500 + 0.6x^2$.

What price per computer must be charged in order to make maximum profit? [8]

- b) Consider the function $y = x^3 6x^2$.
 - i) Find all critical points of y. [2]
 - ii) Use the second derivative test to classify the critical points found in i) above. [4]
 - iii) Find all values of x on which the curve is increasing and/or decreasing. [6]

QUESTION B5 [20 Marks]

Integrate;

a)
$$\int x \sin(x^2 + 1) dx.$$
 [5]

b)
$$\int (x+1)e^x dx.$$
 [5]

c)
$$\int \frac{x-1}{(2x+1)(3x+1)} dx$$
. [7]

d)
$$\int_{-1}^{2} (3x^2 + 3)dx$$
. [3]

QUESTION B6 [20 Marks]

- a) Calculate the change in total profits if a company with marginal revenue and marginal cost is given by $R'(x) = \frac{2400}{(10+x)^2}$ and C'(x) = 0.02x + 5 increases production from x = 20 to 30 units. [6]
- b) Consider the price-demand and price-supply equations;

$$p = S(x) = 5x^2 + 60x$$
, $p = D(x) = 200 - 15x^2$.

- i) Find the equilibrium quantity x^* and the equilibrium price p^* . [4]
- ii) Find the consumer's surplus at the equilibrium price level. [5]
- iii) Find the producer's surplus at the equilibrium price level. [5]

END OF EXAMINATION