University of Eswatini

MAIN EXAMINATION, 2018/2019

BASS I, B.Ed I, B.Comm I

Title of Paper

: Algebra, Trigonometry and Analytic Geometry

Course Number

: MAT 107/MAT 121/MS 101

Time Allowed

: Three (3) Hours

Instructions

- 1. This paper consists of SIX (6) questions in TWO sections.
- 2. Section A is **COMPULSORY** and is worth 40%. Answer ALL questions in this section.
- 3. Section B consists of FIVE questions, each worth 20%. Answer ANY THREE (3) questions in this section.
- 4. Show all your working.
- 5. Start each new major question (A1, B2 B6) on a new page and clearly indicate the question number at the top of the page.
- 6. You can answer questions in any order.
- 7. Indicate whether you are full time or part time student and indicate your program on your answer booklet.

Special Requirements: NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

[5]

SECTION A [40 Marks]: ANSWER ALL QUESTIONS

QUESTION A1 [40 Marks]

a) Find the number of positive and negative real zeros possible for the polynomial [5]

$$P(x) = x^4 - 6x^3 + 8x^2 + 2x - 1.$$

b) Express [5]

$$3\log_a(x^2) + 6\log_a(x-1) - \log_a(x)$$

as a single logarithm with a coefficient of 1.

- c) Prove that $(1 + \tan x)(1 + \cot x) = 2 + \sec x \csc x$. [5]
- d) Write and simplify the first three terms in the expansion of $(x-2y)^6$. [5]
- e) Using the method of mathematical induction, prove that

$$2+4+6+\cdots+2n = n(n+1)$$

for all positive integers.

- f) The sum of n terms of an arithmetic progression $-2, 2, 6, \cdots$ is 160. Find n. [5]
- g) Solve the following linear system of equations using Crammer's rule. [5]

$$2x + 3y = 11$$
$$7x - 2y = 1$$

h) Find the center and radius of a circle given by the equation $x^2 + y^2 - 2y = 48$. [5]

SECTION B: ANSWER ANY THREE QUESTIONS

QUESTION B2 [20 Marks]

a) Solve the following linear system of equations using Crammer's rule.

[12]

$$2x + 4y + 6z = 18$$

$$4x + 5y + 6z = 24$$

$$3x + y - 2z = 4$$

b) Prove by mathematical induction that the following formula

[8]

$$1+3+6+\cdots+\frac{n(n+1)}{2}=\frac{n(n+1)(n+2)}{6}$$

is valid for all positive integers.

QUESTION B3 [20 Marks]

a) Find all the roots of the equation $x^3 - 6x^2 + 11x - 6 = 0$. [12]

b) Find a value of k so that when $x^2 + 4x + 7$ is divided by x + k, the remainder is 3. [8]

QUESTION B4 [20 Marks]

a) What amount must Amanda invest at 12% compounded annually, to accumulate E3000.00 at the end of 10 years? [12]

b) Solve the logarithmic equation

[8]

$$2\log_7(x+1) + \log_7(x-5)^2 = 2.$$

QUESTION B5 [20 Marks]

a) Find the coefficient of the term involving x^8 in the expansion of $\left(x^2 - \frac{1}{x}\right)^7$. [8]

i) Find the twenty first term of an arithmetic progression whose 9th term is 16 and 40th term is 47.

ii) The first term of a geometric progression is 4 and the common ratio is 2. Find the sum of the first ten terms.

QUESTION B6 [20 Marks]

a) Solve the equation $z^2 + 4z + 5 = 0$ and express your answer in the form $z = a \pm ib$. [5]

b) Given that the line y + 2x = p and the line $3y + \alpha x = 5$ are parallel, find the value of α . [5]

c) Find the equation of the circle with the center at (4, -3) and radius of r = 7. [5]

d) If $x = 2\cos(\theta)$ and $y = 3\sin(\theta)$, prove that $9x^2 + 4y^2 = 36$. [5]