UNIVERSITY OF SWAZILAND

SUPPLEMENTARY EXAMINATION, 2017/2018 BASS I

Title of Paper

Elementary Quantitative Techniques II

Course Number

MAT102

Time Allowed

Three (3) Hours

Instructions

- 1. This paper consists of TWO (2) Sections:
 - a. SECTION A (40 MARKS)

•

- Answer ALL questions in Section A.
- b. SECTION B
 - There are FIVE (5) questions in Section B.
 - Each question in Section B is worth 20 Marks.
 - Answer ANY THREE ('3) questions in Section B.
 - If you answer more than three (3) questions in Section B, only the first three questions answered in Section B will be marked.
- 2. Show all your working.

Special Requirements:

NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A ANSWER ALL QUESTIONS

QUESTION A1

- (a) Use the limit definition to find f'(x)
 - $(i) f(x) = \frac{1}{x}$
 - (ii) $f(x) = \frac{x+1}{x+2}$

[8 marks]

(b) Use implicit differentiation to find f'(x)

$$y^2 + y + x^2 + x = 0$$

[6 marks]

(c) Find the derivative of y with respect to x if

$$y = x^{\sin x}$$

[6 marks]

QUESTION A2

- (a) Evaluate the following integrals
 - (i) $\int (x^2 4x + 5)^5 (x 2) dx$

(ii)
$$\int \frac{e^{\frac{1}{x}}}{x^2} dx$$

[10 marks]

(b) Evaluate the following by means of partial fractions:

$$\int \frac{dx}{x^3 - 2x^2 + x}$$

[10 marks]

SECTION B ANSWER ANY THREE QUESTIONS

QUESTION B3

(a) Consider th function $f(x) = x^3 3x^2 - 24x + 7$

Determine the open intervals over which f(x) is increasing or decreasing. [10 marks]

(b) Determine the value of the constant b given that the tangent to the curve $y=x^2+bx+1$

at the point (0, 1) is parallel to the line y = 2x - 4 [10 marks]

QUESTION B4

(a) Differentiate and simplify

$$f(x) = x^2 \cos x - 2x \sin x$$
 [8 marks]

(b) Evaluate the integrals

(i)
$$\int x \sin x \, dx$$

(ii)
$$\int x(x^2+3)^8 dx$$

[12 marks]

QUESTION B5

(a) The demand function for a certain product is

$$p(x) = 600 - 0.015x$$

where p(x) is the price per unit, in Emalangeni, and x is the quantity demanded.

For what value of x is the revenue a maximum? What is the maximum possible revenue? What is the selling price per unit that maximise revenue? [10 marks]

(b) Calculate the area of the finite region bounded by the curve $y=x^2+2$ and the straight line y=3x [10 marks]

2

QUESTION B6

When a manufacturing firm sells \boldsymbol{x} unit of its products per month, it sets the unit price at S(x) where

$$S(x) = 100 - \frac{x^2}{10000}$$

The total cost C(x) of producing the x units per month is given by

$$C(x) = \frac{3}{200}x^2 + 40x + 10$$

Determine how many units the company should sell per month in order to [12 marks] realise maximum profits.

Evaluate the definite integral (b)

$$\int_0^5 \frac{x dx}{x^2 + 9}$$

[8 marks]

QUESTION B7

- Use the definition to find the derivative of the following functions:
 - (i) $x^2 + x$

(ii)
$$\frac{1}{x^2}$$

[10 marks]

Evaluate the following integrals: (b)

(i)
$$\int x\sqrt{1+x^2} dx$$
(ii)
$$\int \sin^5 x \cos^3 x dx$$

(ii)
$$\int \sin^5 x \cos^3 x dx$$

[10 marks]