University of ESwatini

Supplementary Examination, January 2019

B.A.S.S. , B.Sc, B.Ed

Title of Paper

: Abstract Algebra II

Course Number : M423

Time Allowed

: Three (3) Hours

Instructions

1. This paper consists of TWO sections.

a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.

b. SECTION B: 60 MARKS

Answer ANY THREE questions.

Submit solutions to ONLY THREE questions in Section B.

- 2. Begin each major question (A1, A2, B2, etc) on a new page.
- 3. Show all your working.
- 4. Special requirements: None.
- 5. Indicate your program next to your student ID number.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A: Answer All Questions

QUESTION A1

- (a) Define;
 - i. An ideal N in a ring R.
 - ii. A divisor of zero in a ring R.
 - iii. The characteristic of a ring R.
 - iv. Unity in a ring R.
 - v. A unit in a ring R.

[10 Marks]

- (b) Prove that in the ring \mathbb{Z}_n ;
 - i. the divisors of zero are those elements that are not relatively prime to n.
 - ii. the elements that are relatively prime to n cannot be divisors of zero.

[10 Marks]

QUESTION A2

- (a) Give a definition of the following:
 - i. an integral domain.
 - ii. a field.

[6 Marks]

(b) Prove that a finite domain is a field.

[10 Marks]

(c) Give an example of an integral domain that is not a field.

[4 Marks]

SECTION B: Answer Three(3) Questions Only

QUESTION B3

(a) Let $\phi_{\alpha}: \mathbb{Z}[x] \to \mathbb{Z}_7$ be the evaluation homomorphism. Evaluate each of the following;

i.
$$\phi_5[(x^3+2)(4x^2+3)(x^7+3x^2+1)]$$
.

ii.
$$\phi_4 [3x^{106} + 5x^{99} + 2x^{53}]$$
.

[10 Marks]

(b) Show that the rings \mathbb{Z} and $2\mathbb{Z}$ are not isomorphic.

[4 Marks]

(c) Show that for a field F, the set of all matrices of the form $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$ for $a, b \in F$ is a right ideal but not a left ideal of the ring $R = M_2(F)$. [6 Marks]

QUESTION B4

Which of the following are integral domains and which are fields? Justify your answer.

(a) $\mathbb{Z}_2 \times \mathbb{Z}_2$.

[5 Marks]

(b) $\{a + b \ i : a, b \in \mathbb{Q}\}.$

[5 Marks]

(c) $\mathbb{Z} \times \mathbb{R}$.

[5 Marks]

(d) $\mathbb{R}[x]$.

[5 Marks]

QUESTION B5

(a) Determine which of the following polynomials in $\mathbb{Z}[x]$ satisfy an Eisenstein's criterion for irreducibility over \mathbb{Q} .

i.
$$4x^{10} - 9x^3 + 24x - 18$$
.

ii.
$$2x^{10} - 25x^3 + 10x^2 - 30$$
.

[8 Marks]

- (b) Express $f(x) = x^3 + 2x + 3$ in $\mathbb{Z}_5[x]$ as a product of irreducible polynomials in $\mathbb{Z}_5[x]$. [6 Marks]
- (c) Prove that if D is an integral domain, then D[x] is also an integral domain.

[6 Marks]

QUESTION B6

- (a) Let α be a zero of $x^2 + x + 1$ in the extension field of \mathbb{Z}_2 . Give the addition and multiplication tables for the four elements of $\mathbb{Z}_2(\alpha)$. [6 Marks]
- (b) Show that the polynomial $f(x) = x^p + a$ in $\mathbb{Z}_p[x]$ is not irreducible for any $a \in \mathbb{Z}_p$.
- (c) For each of the given algebraic numbers $\alpha \in \mathbb{C}$, find $\operatorname{irr}(\alpha, \mathbb{Q})$ and $\operatorname{deg}(\alpha, \mathbb{Q})$

i.
$$\sqrt{3-\sqrt{6}}$$

i.
$$\sqrt{3 - \sqrt{6}}$$
.
ii. $\sqrt{\frac{1}{3} + \sqrt{7}}$

iii.
$$\sqrt{2} + i$$

[9 Marks]

QUESTION B7

- (a) Find all the monic irreducible polynomials of degree 2 over \mathbb{Z}_3 . [9 Marks]
- (b) Prove that every field is an integral domain. [7 Marks]
- (c) Factor the polynomials $4x^2 4x + 8$ as a product of irreducibles in $\mathbb{Z}_{11}[x]$. [4 Marks]