University of ESwatini

Final Examination, December 2018

B.A.S.S., B.Sc, B.Ed

Title of Paper

: Abstract Algebra II

Course Number

: M423

Time Allowed

: Three (3) Hours

Instructions

1. This paper consists of TWO sections.

a. SECTION A(COMPULSORY): 40 MARKS Answer ALL QUESTIONS.

b. SECTION B: 60 MARKS
 Answer ANY THREE questions.
 Submit solutions to ONLY THREE questions in Section B.

- 2. Begin each major question (A1, A2, B2, etc) on a new page.
- 3. Show all your working.
- 4. Special requirements: None.
- 5. Indicate your program next to your student ID number.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

SECTION A: Answer All Questions

QUESTION A1

- (a) Show that if D is an integral domain, then the ring D[x] of polynomials is also an integral domain. [7 Marks]
- (b) The polynomial $x^4 + 2x^3 + x^2 + x + 1$ has a linear factor in $\mathbb{Z}_3[x]$. Find the factorisation into irreducible polynomials in $\mathbb{Z}_3[x]$. [7 Marks]
- (c) Show that $\alpha = \sqrt{1 \sqrt{2}}$ is algebraic over \mathbb{Q} . Find the minimum polynomial and the degree of α
 - i. over \mathbb{R}
 - ii. over Q

[6 Marks]

QUESTION A2

- (a) Show that the polynomial $x^2 + x + 1$ is irreducible in $\mathbb{Z}_2[x]$. [6 Marks]
- (b) Set α be a zero of $x^2 + x + 1$ in the extension field of \mathbb{Z}_2 , i.e $E = \mathbb{Z}_2(\alpha)$.
 - i. Write down all elements of $\mathbb{Z}_2(\alpha)$. [6 Marks]
 - ii. Construct the multiplication table for $\mathbb{Z}_2(\alpha)$, showing the inverses for each non zero element. [8 Marks]

SECTION B: Answer Three(3) Questions Only

QUESTION B3

- (a) i. Give an example of a ring R with unity 1 that has a sub-ring R' with unity 1' but $1 \neq 1'$. [4 Marks]
 - ii. Show that the set of matrices of the form $\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix}$ is a left ideal of $M_2(F)$ where $a, b \in F$.
 - iii. Give an example of a commutative ring R with no zero divisors but is not an integral domain. [2 Marks]
- (b) State whether true or false.
 - i. Every ring has unity.
 - ii. If the ring R is commutative then the ring R[x] is also commutative.
 - iii. Every ring with unity has at most two units.
 - iv. If F is a field, then the units in F[x] are the units in F.
 - v. Non zero elements of a field form a group under multiplication.
 - vi. If R is a ring then the divisors of zero in R[x] are the divisors of zero in R.

[12 Marks]

QUESTION B4

- (a) Use Fermat's theorem to compute the remainder when 8¹²³ is divided by 13.

 [6 Marks]
- (b) For each of the given algebraic numbers $\alpha \in \mathbb{C}$, find $\operatorname{irred}(\alpha, \mathbb{Q})$ and $\operatorname{deg}(\alpha, \mathbb{Q})$.

i.
$$\sqrt{3+i}$$
.
ii. $\sqrt{\frac{1}{5}+\sqrt{7}}$.

[6 Marks]

(c) Show that if a polynomial $f(x) \in \mathbb{Z}[x]$ is reducible over \mathbb{Q} then its also reducible over \mathbb{Z} . [8 Marks]

QUESTION B5

- (a) Define;
 - i. An ideal N in a ring R.
 - ii. A divisor of zero in a ring R.
 - iii. The characteristic of a ring R.
 - iv. Unity in a ring R.
 - v. A unit in a ring R.

[10 Marks]

- (b) Prove that in the ring \mathbb{Z}_n ;
 - i. the divisors of zero are those elements that are not relatively prime to n.
 - ii. the elements that are relatively prime to n cannot be divisors of zero.

[10 Marks]

QUESTION B6

- (a) Give a definition of the following:
 - i. an integral domain.
 - ii. a field.

[6 Marks]

(b) Prove that a finite domain is a field.

[10 Marks]

(c) Give an example of an integral domain that is not a field.

[4 Marks]

QUESTION B7

(a) State Eisenstein's criterion for irreducibility.

[3 Marks]

(b) Use Eisenstein's criterion to show that $f(x) = 26x^5 - 5x^4 + 25x^2 - 10$ is irreducible over \mathbb{Q} . [3 Marks]

(c) Find all zeros of $x^3 + 2x + 2$ in \mathbb{Z}_7 .

[6 Marks]

(d) Find the quotient and the remainder when $f(x) = 3x^4 + 2x^2 - 1$ is divided by $D(x) = 2x^2 + 4x$ in $\mathbb{Z}_5[x]$. [8 Marks]

END OF EXAMINATION