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QUESTION Al [40 Marks] 

a) Consider the complex number ¢ 2 2i. Determine the following: 

i) Complex conjugate of ¢. [1] 
ii) Modulus of ¢. [1] 

iii) Im(¢ ¢) [1] 
iv) Multiplicative inverse of ¢. [2] 
v) Principal value of the argument [2] 

b) Determine the order of each pole of 

and the corresponding residue. [3] 

c) Find the residue of J(z) = :2~~ at z z. [3] 

d) Express w z2(3 - 3i) in the form w u(x, y) + iv(x, y). [3] 

e) Find all values of p = (16)1/4. [4] 

f) Find Arg(l i). [3] 

g) Determine if J(z) = cos(xy) + i(3y  x) is analytic at (0,0). [3] 

h) Let C be a positively oriented circle such that Izi = 4. Find 

( dz 
Jc~ 

[2] 

i) Using the known Maclaurin series for J(z) = cos(z), find the Maclaurin series of 

J(z) = COS(Z3). 

[2] 

j) Using the precise definition of a limit, show that 

[4] 

k) Show that when a limit of a function J(z) exists at a point ZQ, it is unique. [6] 
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SECTION B: ANSWER ANY THREE QUESTIONS 

QUESTION B2 [20 Marks] 

a) Let C be a positively oriented circle such that Izl 4. Use Cauchy's residue theorem to 
determine 

1(5z - 2)dz 
c z(z-l) . 

[7} 

b) Suppose that 
z

J(z) = 

Find the residue of J at z = -i. [7J 

c) Let C be a positively oriented circle such that Izi = 1. Find 

r (z - 1) d 
Jc (z + 4)(z i) z 

[6] 

QUESTION B3 [20 Marks] 

a) Let J(z) z2. 

i) Determine if J{z) = z2 is analytic everywhere inside and on a simple closed contour C, 
Iz\ = 71 taken in the positive sense. [6J 

ii) Using your answer in part i), find 

r z 
2 
dz.. 

Jc z-z 

[7J 

b) Suppose that C is a positively oriented circle such that Izl 2. Find 

r zdz 
Jc (9 - z2)(z + i) . 

[7] 
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QUESTION B4 [20 Marks] 

a) Find the Laurent series that represents the function 

. ( 4 
J z) = (z - l)(z 22 

in the domain 1 < Izl < 2. [8] 

b) Derive the Maclaurin series for the entire function 

J(z) = sin(z). 

[7] 

c) Using your answer in part b), find the Maclaurin series for the entire furrction 


J(z) si.nh(z). 


[5] 

QUESTION B5 [20 Marks] 

State and prove Cauchy'S Integral theorem. [20] 

QUESTION B6 [20 Marks] 

Derive Cauchy-Riemann equations for J(z) = u(x, y) + iv(x, y) at a point (xo, Yo). [20] 

___________--J..jEND OF EXA:MINATION PAPER~___________ 


