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SECTION A [40 Marks]: ANSWER ALL QUESTIONS 

QUESTION Al [40 Marks] 

a) Consider the complex number </> = -1 + i. Determine the following: 

i) Complex conjugate of </>. [1] 
ii) Modulus of </>. [1] 

iii) I m(</> - ¢) [1] 
iv) Multiplicative inverse of </>. [2] 
v) Principal value of the argument of </>. [2] 

b) Show that IZ1Z21 IZlllz21, where Zl and Z2 are complex numbers. [5J 

c) Express w = z2 - 3z - 3i in the form w u(x, y) + iv(x, y). [3] 

d) Show that Re(iv) = -Im(v), where v = x + iy and x, y E R. [3] 

e) Find all values of p = (-1- i)1/2. [4J 

f) Show that log(e) = 1 + 2mri [3] 

g) Determine if J(z) 3x2 sin(y) - i(3y - x) is analytic at (0,7f). [4] 

h) Let C be a positively oriented circle such that Izl = 1. Use Cauchy-Goursat theorem to 
determine r dz 

} c --::-+-2z-+-2 

[2] 

i) Using the known Maclaurin series for J(z) = sin(z), find the Madaurin series of 

J(z) = sin(z3). 

[3J 

j) Find the residue of J(z) = S=;-~ at z = -i. [3] 

k) Determine the order of each pole of 

J(z) = (_z )3
2z+ 1 

and the corresponding reSidue. [3] 
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SECTION B: ANSWER ANY THREE QUESTIONS 


QUESTION B2 [20 Marks] 

a) Show that 

log(-1 + iV3) = In(2) + 21ii ( n + ~) 
[7] 

b) Let p, and q be complex numbers. Prove that if pq = 0, then at least one of the two factors 
is zero. [6] 

c) Let v and w be complex numbers. Show that Iv + wi ;:::: Ilvl- Iwll. [7J 

QUESTION B3 [20 Marks] 

a) Suppose that 
j(z) = u(x, y) + iv(x, y) 

and j'(z) exists at a point Zo = Xo + iyo. Show that the first order partial derivatives of u 
and v must exist at a point (xo, Yo) and they must satisfy the Cauchy-Riemann equations 

[15] 

b) Show that the function 
j(z) 3x + y + i(3y - x) 

is entire. [5] 

QUESTION B4 [20 Marks] 

a) Let j be analytic everywhere inside and on a simple closed contour C, taken in the positive 
sense. If Zo is any point interior to C, then prove that 

r j(z)dz = 21iij(zo).
Jc z - Zo 

[15] 

b) Show that if C is a positively oriented circle such that Izi = 2, then 

r zdz 1i 
Jc -'-(9--z2-)(-'-Z-+-7-') = 5"' 

[5] 
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QUESTION B5 [20 Marks] 

a) Find the Laurent series that represents the function 

-1 
J(z) = (z - l)(z - 2) 

in the domain 1 < Izl < 2. [8] 

~ (eiz + e-izb) Using the fact that cos(z) ) , derive the Maclaurin series for the entire function 

J(z) cos(z). 

[8] 

c) Using the fact that cosh(z) cos(iz) and your answer in part b), find the Maclaurin series 
for the entire function 

J(z) == cosh(z). 

[4] 

QUESTION B6 [20 Marks] 

1 
a) Let C be a positively oriented circle such that Izl 4. Use Cauchy's residue theorem to 

show that 
(5z - 2)dz = lO11"i. 

c z(z - 1) 

[7] 

b) Suppose that 


J(z) = (In(r) + ie)3 > 0 0 < e < 211". 

Z2 + 1 ' r , 

Find the residue of J at z = i. [7] 

c) Let C be a positively oriented circle such that Izl = 1. Find 

1 (z-l) d 
c (z + 4)(z 7) z 

[6] 

____________END OF EXAMINATION 


