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SECTION A 

QUESTION 1 

(a) 	What is meant by "(X, d) is a metric space?" [3] 

• 	 (b) A translation T : ]R2 --+ ]R2 is a mapping given by T(x) = (Xl + a, X2 + b) for 

some fixed point (a,b) E ]R2, where X = (Xl,X2) E ]R2. Prove that the Euclidian 

metric d2 on ]R2 is translation invariant, in the sense that for any two points 

x = (Xl, X2) and Y = (Yll Y2) in ]R2, we have 

[3] 

(c) Suppose that (xn) converges to X in C [a, b] in the uniform metric. Explain what 

is meant by pointwise convergence of a sequence (xn) in C [a, b]. Show that {Xn} 

converges to x pointwise. [4] 

(d) Define compactness of a metric space in terms of 

(i) open coverings, 	 [2] 

(ii) 	sequences. [1] 

(e) 	 Explain what is meant by a contraction of a metric space, and state without 

proof the Contraction Mapping Theorem. [3] 

(f) (i) What is a Lebesgue number for a given open cover of a metric space? [1] 

(ii) 	State without proof Lebesgue's Covering Lemma. [3] 

QUESTION 2 

Show that infinitely many metrics can be defined on a set with more than one element. 

(Hint: Given a metric space (X, d1), show that d2 (x, y) = dl~X( y) )' 't/ x, Y E X, is 
1 + 1 X,Y 

a metric on X, and then apply induction on n EN). 	 [20] 



SECTION B 


QUESTION 3 


(a) Can you find a metric space (X, d) where: 

(i) The interval [0,1] is both open and closed? [2] 

(ii) The interval [O,~] is open but not closed? [2] 

Justify your answer in each case. 

(b) Describe open balls B(a, 3), where a (2,3) in J.R2 with respect to the following 

metrics: 

(i) the Chicago metric; [4] 

(ii) the London (or UK)-rail metric; [4] 

(iii) the New York metric; [4] 

(iv) the Raspberry pickers' metric. [4] 

QUESTION 4 

Let A C J.R2 be the region bounded by the unit disc centered at the origin. Find 

diam(A) with each of the following metrics: 

(a) the Max metric; [4] 

(b) the Chicago metric; [5] 

(c) the London (or UK)-rail metric; [3] 

(c) the New York metric; [4] 

(d) the Raspberry pickers' metric. [4] 



QUESTION 5 


(a) Give two alternate definitions of connectedness of a subset M of a metric space 

X. 	 ~ 

(b) Let X 	 C[O, 1], the set of all continuous functions on [0,1], and let d be the 

metric on X defined by 

d(I, g) = l 1If(X) - g(x)1 dx. 


For each n E N, define fn by fn(x) xn for all x E [0,1]. 


(i) 	 Show that the sequence (In) converges in X, ari'd find its limit f. [3] 

(ii) 	 Show that the function f in Part (i) is not the pointwise limit of the 

sequence (In). [3] 

(c) 	 Let d be the metric on X = C[a,b] defined by 

d(I, g) = sup If(x) - g(x)l· 
zE[a,b] 

Let (In) be a sequence in C[a, b], and suppose that (In) converges uniformly on 

[a, b] to some function f. 

(i) 	Prove that f is continuous on [a, b], and hence show that (In) converges in 

(X,d). [5] 

(ii) 	 Prove that lb fn(x) dx -71b 
f(x) dx as n -700. [5] 



QUESTION 6 

(a) Prove that the sequence 

is not convergent in JR.2 equipped with the London (or UK)-rail metric. [10] 

(b) Let 	f be the function f: C [0, 1] -+ JR. defined for x E C [0, 1] by f(x) = x(O). 

Show that f is not continuous with respect to the L} metric on C [O,:t] (and the 

usual metric on JR.) by considering the functions xn(t) given by 

(n -	 l)t if °~ t ~ ~ 
xn(t) = 

{ 1-t if l<t<l n - ­

(Hint Sketch the functions xn(t) and consider their limit in the Ll metric). [7] 

(c) 	 Let (X, d) be a metric space with the metric 

{ ° if x = y,d(x, y) = 
3 	 if x =1= y. 

Show that any Cauchy sequence in X is eventually constant, and deduce that 

(X, d) is complete. [3] 



QUESTION 7 

(a) Let X be a metric space. When is a subset M S;;; X said to be: 

(i) bounded; 

• (ii) totally bounded. 	 [3] 

(b) Prove 	that in JR with the usual metric, the notions of boundedness and total 

boundedness are equivalent. [5] 

(c) Show that a compact set is closed and bounded. 	 [6] 

," 
(d) Which of the following sets is compact? Give reasons. 

(i) 	 {(x,y): O:C; x:C; y:C; l} in JR2, 

(ii) 	 {l,~) ;2)"" 31n1 "'} in JR, where n E N. [6] 

END OF EXAMINATION 


