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SECTION A {f-I 

• QUESTION 1 

Let (X, d) be a metric space. Define the following: 

(a) the distance from x E X to a subset A eX; 

(b) the diameter of A eX; 

(c) the distance between two subsets, A and B, of X j 

(d) a bounded subset A c X; 

(e) a bounded mapping 9 from a nonempty set Y to X; 

(f) a convergent sequence (xn) in X; 

(g) a Cauchy sequence (xn) in X; 

(h) a subspace (Y, dy ) of (X, d); 

(i) an open ball B(a, r) in (X, d); 

(j) an open subset F of X. 
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QUESTION 2 

(a) Can you find a metric space (X, d) where:• 

(i) The interval [0,1] is both open and closed? [2] 

(ii) The interval [O,~] is open but not closed? [2] 

Justify your answer in each case. 

(b) Describe open balls B(a, 3), where a = (2,3) in 1R2 with respect to the following 

metrics: 

(i) the Chicago metric; [3] 

(ii) the London (or UK)-rail metric; [4] 

(iii) the New York metric; [4] 

(iv) the Raspberry pickers' metric. [3] 

(c) Give an example of a metric space in IR, equipped with the usual metric, such 

that diam{AO) < diam(A). [2] 



SECTION B 

• QUESTION 1 

Let A C JR2 be the region bounded by the unit disc centered at the origin. Find 

diam(A) with each of the following metrics: 

(a) the Max metric; [4] 

(b) the Chicago metric; [5] 

(c) the London (or UK)-rail metric; [3] 

(c) the New York metric; [4J 

(d) the Raspberry pickers' metric. [4J 

QUESTION 2 

(a) Let (X, d) be a metric space, and let (xn) and (Yn) be two sequerices in X such 

that (Yn) is a Cauchy sequence and d(xn, Yn) -+ 0 as n -+ oo.Prove that: 

(i) (xn) is a Cauchy sequence in X; [5J 

(ii) (xn) converges to a limit x in X if and only if (Yn) also converges to x in 

X. [5J 

(b) Prove that every Cauchy sequence in a metric space (X, d) is bounded. [4J 

(c) Let (X, d) be a metric space, and let d' be the metric on X defined by 

d'(x, y) = min{l, d(x, y)}. 

Prove that (xn) i.. ~Cauchy sequence in (X,d) if and only if (xn) is a Cauchy 

sequence in (X, d'). [6J 



QUESTION 3 

(a) If a sequence (xn) is convergent and has limit x, prove that every subsequence • 
(Xnk)k~l of (xn) is convergent and has the same limit x. 	 [4] 

(b) Let X = C[0,1], the set of all continuous functions on [0,1]' and let d be the 

metric on X defined by 

dU,g) = 111/(X) - g(x)1 dx. 

For each nEW, define In by In(x) = xn for all x E [0,1]. 

(i) Show that the sequence Un) converges in X, and find its limit I· [3] 

(ii) Show that the function I in Part (i) is not the pointwise limit of the 

sequence Un). [3] 

(c) 	 Let d be the metric on X = C[a, b] defined by 

d(l,g) = sup I/(x) - g(x)l· 
3:E[a,b] 

Let Un) be a sequence in C[a, b], and suppose that (In) converges uniformly on 

[a, b] to some function I. 

(i) Prove that I is continuous on [a, b], and hence show that (In) converges in 

(X,d). [5] 
b 	 b·· 

(ii) Prove that 1In(x) dx ---+ 1I(x) dx as n -t 00. 	 [5] 
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QUESTION 4 

(a) Given a function f : (X, d1) --+ (X, d2 ), 

(i) When is f said to be continuous in the c - 0 sense? 

(ii) Give an equivalent definition in terms of open sets. 

(iii) Assuming f is continuous at Xo, prove that 

[14] 

(b) Prove that the function 1f : ]R2 --+ ]R defined by 1f(x, y) = x is continuous when 

]R2 and ]R are equipped with their usual metrics. Is 'If uniformly continuous? 

Justify your answer. [6] 

QUESTION 5 

(a) When 	 are two subsets A and B of a metric space said to be 

separated? [2] 

(b) Verify 	 that two nonempty disjoint closed sets in a metric space are 

separated. [2] 

(c) 	 Give two alternate definitions of connectedness of a subset M of a metric space 

X. 	 [4] 

(d) 	 (i) Prove that if X is a connected metric space and f : X--+ ]R is a continuous 

function, then f{X) is connected. 

(ii) 	Deduce that if f : [0, 1] --+ [0,:1.] is continuous, then there exists an 

x E [0,1] such that f(x) = x. [12] 

END OF EXAMINATION 


