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QUESTION 1 

1. (a). Find a function of the form y = a + bx that best fits the data 
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in the least squares sense. 	 [10 marks] 

(b) Show that the Chebyshev polynomials of the first kind are orthogonal on 
the open interval ( -1) 1) with respect to the weight function 

w(x) I/Jl - x2 • [10 marks] 

QUESTION 2 

2. 	 (a) Find the linear least squares polynomial approximation to f(x) = lnx on 
[0,1]. [8 marks] 

(b) 	 Use Legendre polynomials of degree at most 2 to approximate e2x . 

[12 marks] 

QUESTION 3 

3. (a) Use a single step of the Taylor series method of order 2 to solve 

X" + 2x' +x = tInt, 0 ~ X ~ 1, x(O) = O,x'(O) = I, 

for x(O.I) and x'(O.I) correct to 3 decimal places. [14 marks] 

1
0.1 

(b) Approximate the integral 0 e-7'2dr by using a single step of the modified 

Euler method. Give your answer correct to 3 decimal places. 

[6 marks] 



QUESTION 4 

4. 	The initial value problem (IVP) 

x'(t) f{t,x), a:5 t :5 b, x(a) = a 


may be solved using each of the following multistep methods. 


(a) Yn+l = Yn + ~[jn-l + fn] 

(b) Yn+2 = -3Yn + 4Yn+1 - 2hfn 

Analyse each method for consistency, zero-stability and convergence. [20 marks] 

QUESTION 5 

5. 	 Let n be the L-shaped region in R2 enclosed by the polygonal path r passing 
through the points (0,0), (0,3), (1, 3), (1,2), (3,2) and (3,0). 

(a) Consider the Laplace equation 

uxx(x, y) + Uyy(x, y) (x,y) En 

subject to boundary condition 

u(x, y) =x2 + y, (x, y) E r 

Use the "the 5 point formula" with a uniform grid on n to approximate 
both u(1, 1) and u(2, 1). [10 marks] 

(b) Given the Poisson equation 

uxx(x, y) + Uyy(x, y) (x,y) En 

subject to boundary condition 

u(x, y) =x + y, (x, y) E r, 

consider a finite difference method resulting from using central difference 
approximations for the derivatives. Use this method to approximate both 
u(1,1) and u(2, 1). [10 marks] 



QUESTION 6 

6. Consider the differential problem; 

Ut(x, t) =Uxx(x, t), a< x < 1, t > 0, 

u(O, t) =1, ux (l, t) = 0, t > 0, 

U(x, 0) = sin(7rx) , a~ x ~ 1. 

Suppose that an approximate solution to this problem is determined by replac­
ing Ut with a forward difference, and that both Ux and Uxx are replaced by 
central differences. 

(a) Show that the resulting finite difference equations may be written in matrix 
form as 

Uj+l = BUj + v, where j = 0,1, ... 

Identify the square matrix B, and the vectors Uj and v. [12 marks] 

(b) Use this numerical scheme with l:::.t = 0.1 and l:::.x = 0.5 to approximate 
u(0.5, 0.1). [8 marks] 

QUESTION 7 

7. (a) Show that the numerical scheme 

U!,,+l Ur:- U!,,+l - 2U~+1 + U~+l
J J _ J-l J J+l 

k - h2 

for approximating the differential equation 

Ut =Uxx (1) 

is unconditionally stable. [10 marks] 

(b) Determine the coefficients eo, Cl and C-l so that the scheme 

Uj+l =C-ll!j_l + eoUj + c1Uj+l 

for approximating the differential equation 

Ut +aux =0 

agrees with the Taylor series expansion of u(xn' tn+l) to as high an order 
as possible when a > a is constant. [10 marks] 


