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QUESTION 1 

(a) (i) Prove that 1m(iz) = Re z, 

(ii) solve zn 1 for any integer n. 	 [2,4] 

(b) In the complex plane define and give example of 

(i) domain, 

(ii) interior point. 	 [2,2] 

(c) Sketch the following sets and determine which are domains 

(i) 	12z + 31 > 4, 

(ii) Re z ~ 2, 

(iii) 0 < arg z < i' 	 [2,2,2] 

(d) Construct a line 

Re~ 2. 	 [4]
z 

QUESTION 2 

(a) Find the region into which a transformation w = z2 maps the strip 0 ~ x ~ c, y:?: O. [4] 

(b) Find the limits. Give your reasonings 

(i) 	 lim 3z +3i, 
z-+oo 1 + z 

(.. ) l' iz + 2
11 1m 	 [2,2]

z-+-2 Z + 2 

(c) Define fez) continuous at zoo 	 [2] 

(d) Using just a definition of derivative, find if possible f'(z) if 

(i) 	fez) = z2 + 3, 

(ii) fez) 1m Z. 	 [2,2] 

(e) Derive Cauchy-Riemann conditions 	 [6] 



QUESTION 3 


(a) Using Cauchy-Riemann equations (CRE) 

(i) state the sufficient conditions theorem for existance of J'(z), and thus 

(ii) check ifthere is J'(z) if J(z) z2, J(z) = Iz12. Find J'(z). [2,6] 

(b) Verify CRE for 

J(z) = z - z. [4] 

(c) Use CRE in polars to show that 


J'(z) = e-i9 (u r + ivr ) 


in the usual notations. 


sinO
HINT: u'" = U r cos 0 - U9-­

r 
sinO 

v'" = Vr cosO - V9--. [8Jr . 

QUESTION 4 

a) Consider J(z) = ~. Give your reasonings to answer if J 
z 

(i) is analytic, 

(ii) has the singular points. [2,2] 

b) Prove that if J(z) = u(x,y) + iv(x,y) is analytic, z = x + iy, in domain D, then U and v are 

harmonic in D. [6] 

c) For the function u(x,y) = x2 + 3y2, find whether it can be the real part of a complex analytic 

function, and if so, find the corresponding imaginary part. [3J 

d) Show that u(x,y) = X4 - 6x2y2 + y4 is harmonic and find corresponding harmonic conjugate 

function. [7] 



QUESTION 5 

a) Let J(z) z - 1 and c is the arc from z = 0 to z = 2 consisting of the semicircle z = 1 +ei8 , 1r $ 


() $ 21r. 


Evaluate 11(z)dz. [6] 


b) (i) Derive Cauchy formula for continuous J'(z). 


HINT: Apply Green's formula 


lpdx+QdY= f t(Qx- PlI )dXdy . 

(ii) Use result from (i) to evaluate 

l)(z2 + 25)' 

if c = {z : Izl = 4 in positive direction, and Izi = 2 in negative direction}. [6,3] 

c) Apply Cauchy integral formula to evaluate 

1· - dz 

1 dz 

where c is a positively oriented circle Izi = L [5] 

QUESTION 6 

a) Apply extended Cauchy integral formula to evaluate 

1c (z2 dz+ 4)2' wereh'c 1S a pos1tIve y onente "1' d'llz il 2.C1rc e [6] 

b) State the Laurent series theorem. [3] 

1 . MI' .c) Expand J(z) III ac aurm senes. [3]
l+z 

d) i) Expand 

1 
J(z) = (z 1)2(z -3) 

in Laurent series in powers of z - 1 valid for 0 < Iz 11 < 2. 

(ii) What is the principal part of the series in i)? [7,1] 



QUESTION 7 

1 
a) For fez) = .z _ z­

(i) find residue at z = 0, and thus 

(ii) evaluate 1 dz? , where c is a positively oriented circle Izl = 2. [4,3] 
c 4z - z 

b) i) State the residue theorem, and 

ii) apply it to evaluate 1~, where c is a positively oriented circle Izl = 2. [2,4] 
c 1 +z 

c) Using the residue theorem evaluate 

(")C) xsinx dx. 

Jo x2 + 1 


