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QUESTION 1 

(a) Does the point R(4,4) lie on the line through P(l, 1) and Q(2,2)? 	 [4] 

(b) Find the angle between a = i -1 and b=1 - k. 	 [4] 

(c) Use vector product to find the area of the parallelogram spanned by the vectors a = (2,3, -1) 

and b= (1,2, -4). [5] 

(d) Find the volume of parallelepiped spanned by the directed segements OA, DB and 00, if the 

coordinates of A, B and C are (2,2,2), (0,2,2), (2, 0,8), respectively [7] 

QUESTION 2 

3(a) If I(x) = x - ;, find all numbers in the interval (0,1) for which the mean value theorem is 

satisfied. [3] 

(b) Compute 

(i) 	 lim sin x - e 
Z 

+ 1, 
:17 .....0 

3C) li x + 2x + 2 
n :17+~ 2x3 + x2 - 3x -+ i' 

(iii) lim (e:17 - 1) cotx. 	 [3,3,5]
:17.....0+ 

(c) Use the quadratic approximation to compnte VI + x for small Ix I and estimate the error. In 

particular compute v'i8. [6] 

QUESTION 3 

(a) Find the fourth Taylor polynomial at Xo = 0, for I(x) = e-:I7. 	 [4] 

(b) Find the partial derivatives of I(x, y) = x 2y5, at a point P(-1,2). 	 [3] 

(c) Use the chain rule to evaluate I~ and I~ if I(x, y) = x2 - y2, X = u2 + v2, Y= 2uv. [6] 

(d) Verify equality of mixed derivatives theorem for 

I(x,y) lnJx2+y2. 

[3] 

(e) If lex,y) 4sin2xcos2y, what is dl? 	 [4] 



QUESTION 4 

a) For the function f = x 3 - y2 + yz -12x find 

(i) the gradient, 

c) Use the method of Lagrange to find the extreme value of f(x, y) = x - y2, subject to constraint 

(ii) the stationary points. [2,2] 

b) Find and classify all stationary points if f (x, y) = x 3 + y3 - 3x ­ 3y. [4] 

2 

2x + y = 5. [5] 

(d) Find three positive numbers whose sum is 24 and whose product is as large as possible. [7] 

QUESTION 5 

a) Compute the volume under the graph of z = f(x,y) = x + 4y over the region 0 < x < 2, 

1 < y < 2. [4:1 

b) Compute J J x2ydxdy if D is the interior of the triangle with vertices (0,0), (0, 1), (1,0). [5] 

D 

c) Use the separation of variables tp evaluate integral of f = e-:r: sin 2y, 


if 0 < x < 1, 0 < y < ~. [4] 


d) Compute J J (x2+ y2); dxdy in polar coordinates, if D is a region in the first quadrant bounded 


D 
by the circles x 2 + y2 = 1 and x 2 + y2 = 4, and the coordinate axes. [7] 



QUESTION 6 

a) Compute J J J (x2 + y2 + z2) dx dy dz, where D is a cube 

D 

0< X < 1, 0 < y < 1, 0 < z < 1. [6] 

b) Pass to the spherical coordinates to evaluate J J J z2dx dy dz, where D is the volume bounded 

D 
by the sphere x2 + y2 + z2 ::; 4. [8:1 

c) Separate the variables to solve the following initial value problem, 
3 

[6]y' = ~, y = 2 when x = O. 

QUESTION 7 

a) Prove that if the function !(x, y) is homogeneous of degree 0, then f(x, y) 


is function of J!.. alone. [3]

x 

b) Consider the following ODE 

3(3x2 + y2)dx - 2xydy = O. 

(i) Show that the coefficients are the homogeneous functions. 

(ii) Solve the equation. [1,4] 

c) Consider ODE 

(3t2 sin2 x)dt + (2t3 sinx cos x 2e2x )dx = O. 

(i) Test it for exactness, 

(ii) Solve ODE. 

[2,5] 

(d) Solve the following initial value problem, 

y" - 2y' 3y =0, 

y(O) = 4, y'(O) 0 

[5] 



