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QUESTION 1 

(a) Let X be a nonempty set with a map d : X x X ---+ R What is meant by 

saying that (X, d) is a metric space? [4] 

(b) Check carefully that the set X = C, equipped with the function d defined, for 

any x,y E C, by 

d(x, y) = { 'n{lxl + Iyl, Ix - 11 + Iy - II} if x = yDllO 

otherwise, 

is a metric on C. [16] 

QUESTION 2 

(a) Give the definition of a pseudometric. 	 [4] 

(b) Let (X, d) be a metric space. Given any four points x, y, z, t E X, prove that 

Id(x, y) - d(z, t)1 $.; Id(x, z) +d(y, t)l. [6] 

(c) 	 A translation T : ]Rz ---+ ]Rz is a map given by T(x) = (Xl + a,Xz + b) for 
G 

some fixed point (a, b) E ]Rz, where X = (x}, xz) E ]R2. Prove that the Euclidian 

metric dz on ]Rz is translation invariant, in the sense that for any two points 

X = (XI,XZ) and y = (Y}'Yz) in ]R2, we have 

[5] 

(d) 	In each of the following cases, state with careful justification whether (X, d) is 

a metric space: 

(i) X = Q equipped with d(x, y) = (x _ y)3; 

(ii) 	X = QC =]R \ Q equipped with d(x, y) = I~ -~I· [2,3] 



QUESTION 3 

(a) Let X =C[-I, 1], and let x(t) = t and y(t) = t3 for t E [-1,1]. Find d(x, y) in 

C[-I, 1], where d is the 

(i) uniform metric, 

(ii) 	 L1-metric, [3,2] 

(b) Give an example of a subset A of JR (equipped with the usual metric) such that 

diam(AO) < diam(A). [3] 

(c) Let 	A be an open subset of a metric space (X, d), and let a E A. Is the set 

A \ {a} open or closed in X? Justify your answer. [3] 

(d) Let Y be a subspace of the metric space X. Prove the following: 

(i) 	 B ~ Y is open in Y if and only if B = Y n A for some open set A in X;[6] 

(ii) 	 B ~ Y is closed in Y if and only if B = Y n F for some closed set in X.[3] 

QUESTION 4 

(a) Let (X,d) be a metric space and (xn ) be a sequence in X. What is meant by 

saying that (xn) is convergent? [2] 

(b) Decide whether or not the following sequences are convergent in the usual (Eu­

clidean) metric on JR2: 

(') 	 (n3 1. (n1r)) 
1 Xn = 2n3 + 1 ' n +2 sm"2 ' 

(ii) 	 Xn = (3-2n , (_I)nexp(.!.)). [4,4] 
n 

(c) 	 (i) Suppose that (xn) converges to x in C [a, b) in the uniform metric. Explain 

what is meant by pointwise convergence. Show that (xn) converges to x 

pointwise. [2,3] 



(ii) Let Xn in C [0, 1J be defined by 

nt if 0 ~ t ~ ~, 
xn(t) = 1{ if l<t<l. n - ­

Sketch the graph of xn(t) and show that (xn) converges pointwise to the 

function 

0 if t = 0,
x(t) = 

{ 1 if O<t~l. 

Deduce that (xn) is not convergent in C [0, 1] with the uniform metric. 

[1,2,2J 

QUESTION 5 

(a) Given a function f : (X, d1) -t (X, d2), 

(i) When is f said to be continuous at a point Xo E X in the £ - 0 sense? [3] 

(ii) Give an equivalent definition in terms of open sets. [4] 

(iii) Assuming f is continuous at Xo, prove that 

[6J 

(b) Prove that the function 1f : JR2 -t JR defined by 1f(x, y) = x is continuous when 

JR2 and JR are equipped with their usual metrics. Is 1f uniformly continuous? 

Justify your answer. [7] 



QUESTION 6 

(a) Can ypu find metric spaces (X, d) where 

(i) [0,1] 	is both closed and open? [2] 

(ii) [O,!) 	is open but not closed? [2] 

(b) 	 (i) Let X be a metric space. Using the definition that a set is open if its 

complement is closed, prove that A ~ X is open if and only if for every 

a E A there is an r > 0 such that the open ball B{a, r) ~ A. [4] 

(ii) Let X = C[-I, 1]. By considering the point a(t) == 1 (i.e. a{t) = 1 \;f t E 

[-1,1]) in C[-I, 1], deduce that A = {x E C[-I, 1] : x(O) 1} is not open 

in C[-1, 1] with the uniform metric. [3] 

(c) 	 Let X be a nonempty set and let p and a be metrics on X. We say that p and 

a are equivalent if there exist positive constants a: and f3 such that 

a: :5 pt' Y~ :5 f3 for all ,Y E X with x =1= y.
a X,Y 

Prove that if p and a are equivalent metrics on X, then (X, p) and (X, a) have 

the same open sets. [5] 

(d) Let X = (R.,d), and let A = U (n, n + 1), where Z2:0 = {O, 1,2, ...}. Sketch 
nEZ>O 

the set A, and decide whether A is an open subset, or a closed subset, or neither, 

of JR. Then find AO, A, and 8(A). [4] 



QUESTION 7 

(a) Let X be a metric space. When is a subset M ~ X said to be: 

(i) bounded; [1] 

(li) totally bounded. [2] 

(b) Define compactness of a metric space in terms of 

(i) open coverings, [1] 

(ii) sequences. [2] 

(c) Show that a compact set is closed and bounded. [8] 

(d) Which of the following sets is compact? Give reasons. 

(i) {(x,y) : 0 $ x $ y $ I} in IR2, [3] 

(li) {I, 1, ;2"'" ;n""} in IR, where n E N. [3] 

END OF EXAMINATION 


