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QUESTION 1 

(a) Does the point R{2, -1) lie on the line through P{-1, 1)andQ{5, -3)1 	 [4] 

(b) Find the angle between ii = (1, -2,4) and v = (1,2,4). 	 [4] 

(c) Use vector product to find the area of the parallelogramm spanned by the vectors a: = (2,0,0) 

and b= (2,2,0). [5] 

(d) Find the volume of parallelepiped spanned by the directed segments OA,OB and DC, if the 

coordinates of A, B and C are (8,4,0), (2,6,0), (0,4,6), respectively. [7J 

QUESTION 2 

(a) H f(x) = x 2 + 1, find all numbers in the interval (1,2) for which the mean value theorem is 

satisfied. [3] 

(b) Compute 

(i) 	lim tanx, 
z .....o x 

(") lim xlnx 
11 z .....+oo (x + 1)2' 

("') I'un (1) . [3,3,5]11l xexp ­
"' .....+0 x 

(c) Use the quadratic approximation to compute VI + x for small Ixl and estimate the error. In 

particular compute VO.164. [6] 

QUESTION 3 

(a) Find the fourth Taylor polynomial at Xo = 1, for f(x) X4. 	 [4] 

(b) Find the partial derivatives of f(x, y) = sin{x2 + v), at x = 0, Y 7r. 	 [3] 

(c) Use the chain rule to evaluate f~ and f~ if f(x, y) x2 + y2, X =U cos v, y = u sin v. [6] 

(d) Verify equality of mixed derivatives theorem for 

f(x, y) = sin{2x +3y). 

[3] 

x2eZ1J(e) H f(x, y) = , what is df? 	 [4] 



QUESTION 4 

a) For the function f = x2 + xy + yz +4z find 

(i) the gradient, 

(ii) the stationary points. [2,2] 

b) Find and classify all stationary points if f(x, y) = x3 + y3 + 3xy. [4] 

c) Use the method of Lagrange to find the extreme value of f(x, y) = x2+ y2, subject to constraint 

x+ 2y=3. [5] 

(d) A farmer who wants to create a rectangular grazing field bordering on a straight river has 600m 

of fencing material. If the side along the stream will not be fenced what length and width will 

provide the ma.xi.m.um grazing area? [7] 

QUESTION 5 

a) Compute the volume under the graph of z = f(x, y) = xy + 1 over the region 0 < x < 2, 0 < 

y < 4. [4] 

b) Compute! ! x 2ydxdy if D is the interior of the triangle with vertices (0,0), (0, 1), (1,1). [5] 

D 

c) Use the separation of variables to evaluate integral of f = y2e-'J:, if 0 < x < 1, 0 < y < 9. [4] 

d) Compute ! ! Jx 2 + y2dxdy in polar coordinates, if D is a region in the first quadrant bounded 

D 
by the llllit circle and the coordinate axes. [7] 

http:ma.xi.m.um


QUESTION 6 

a) Compute J J J yz2e!Z1I% dxdydz, where D is a cube 0 < x < 1, 0 < y < 1, 0 < z < 1. [6] 

D 

b) Let D be the region defined by the inequalities x2+ y2 < 1, 0 < z < x2+ y2. Pass to cylindrical 

coordinated to find J J J x2y2 dxdydz. (8) 
D 

c) Separate the variables to solve the following initial value problem, . 


y' = ky, y = Yo when x = o. [6] 


QUESTION 7 

a) Consider ODE 

M(x, y)dx + N(x, y)dy = O. 

Let M and N be homogeneous functions (HF) of the same degree in x and y. Show that f = ~ is 

the HF of degree O. [3] 

b) Consider the following ODE 

(i) Show that the coefficients are HF. 

(ii) Solve the equation. [1,4J 

c) Consider ODE 

3x(xy ­ 2)dx + (x3 +2y)dy =O. 

[2,5] 

(i) Test it for exactness, (ii) Solve ODE. 

(d) Solve the following initial value problem, 

y" ­ 2y' ­ 3y =0, 

y(O) = 0, y' (0) = -4. 

[5] 


