UNIVERSITY OF SWAZILAND

FINAL EXAMINATIONS 2010/11

B.Sc. / B.Ed. / B.A.S.S. IV

TITLE OF PAPER

: Metric Spaces

COURSE NUMBER

: M431

TIME ALLOWED

: THREE (3) HOURS

INSTRUCTIONS

: 1. THIS PAPER CONSISTS OF

SEVEN QUESTIONS.

2. ANSWER ANY FIVE QUESTIONS

SPECIAL REQUIREMENTS : NONE

THIS EXAMINATION PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GRANTED BY THE INVIGILATOR.

QUESTION 1

- (a) Let X be a nonempty set with a map $d: X \times X \longrightarrow \mathbb{R}$. What is meant by saying that (X, d) is a *metric space*?
- (b) Check carefully that the New York distance is a metric on \mathbb{R}^2 . [20]

QUESTION 2

- (a) Let x(t) = t and $y(t) = t^2$ be continuous functions on \mathbb{R} . Find d(x,y) where d is:
 - (i) the uniform metric on C[0,1];
 - (ii) the L_1 -metric on C[0,2];
 - (iii) the L_2 -metric on C[0,2]. [10]
- (b) Define what is meant by:
 - (i) a Cauchy sequence in a metric space,
 - (ii) a complete metric space. [4]
- (c) Which of the following spaces X is complete and which is incomplete in the usual (Euclidean) metric? Give reasons.
 - (i) $X = \mathbb{Q}$,

(ii)
$$X = \{\frac{1}{n} : n \in \mathbb{N}\}.$$
 [6]

QUESTION 3

Let x=(3,4), y=(-2,9), and z=(4.5,6) in \mathbb{R}^2 . Find d(x,y), d(x,z) and d(y,z) in each of the following metrics on \mathbb{R}^2 :

- (a) Euclidean metric;
- (b) Max metric;
- (c) London (or UK rail) metric;
- (d) Chicago metric;
- (e) New York metric;
- (f) Raspberry pickers (or lift) metric.

[20]

QUESTION 4

- (a) Let (X, d) be a metric space and let S ⊆ X. What is meant by saying that S is closed? Prove that any intersection of closed sets in X is closed and any finite union of closed sets in X is closed.
- (b) What is meant by an open ball B(a,r) in a metric space (X,d)? Show that an open ball is open. By drawing a diagram, or otherwise, describe the open ball B(a,3) in \mathbb{R}^2 , where a=(4,5)
 - (i) with the usual metric
 - (ii) with the max metric.

[6]

(c) Prove that in any metric space X, each closed ball is a closed set. Show that any finite set in X is closed. [6]

[10]

- (a) Let (X, d) be a metric space and (x_n) be a sequence in X. What is meant by saying that (x_n) is *convergent?*
- (b) Decide whether or not the following sequences are convergent in the usual (Euclidean) metric on \mathbb{R}^2 :

(i)
$$x_n = \left(\frac{n^2}{2n^2 + 1}, \frac{1}{n+1}\sin(\frac{n\pi}{2})\right),$$

(ii) $x_n = (3^{-n}, (-1)^n \exp(\frac{1}{n})).$ [8]

- (c) (i) Suppose that (x_n) converges to x in C[a, b] in the uniform metric. Explain what is meant by *pointwise convergence*. Show that (x_n) converges to x pointwise.
 - (ii) Let x_n in C[0,1] be defined by

$$x_n(t) = \begin{cases} nt & \text{if } 0 \le t \le \frac{1}{n}, \\ 1 & \text{if } \frac{1}{n} \le t \le 1. \end{cases}$$

Sketch the graph of $x_n(t)$ and show that (x_n) converges pointwise to the function

$$x(t) = \begin{cases} 0 & \text{if } t = 0, \\ 1 & \text{if } 0 < t \le 1. \end{cases}$$

Deduce that (x_n) is not convergent in C[0,1].

- (a) Let X be a metric space and $A \subseteq X$. What is meant by saying that A is compact?
- (b) Assuming that a closed bounded subset of \mathbb{R} is compact, show that the same is true for \mathbb{R}^2 . [8]
- (c) Show that in any metric space, a closed subset of a compact set is compact.[4]
- (d) Which of the following sets is compact? Give reasons.

(i)
$$\{(x,y): 0 \le x < y \le 1\}$$
 in \mathbb{R}^2 ,
(ii) $\{1, \frac{1}{2}, \frac{1}{2^2}, \dots, \frac{1}{2^n}, \dots\}$ in \mathbb{R} . [6]

QUESTION 7

- (a) Prove that in a metric space (X, d), a subset $F \subseteq X$ is closed if the limit of any convergent sequence (x_n) of points of F is in F.
- (b) Prove that \mathbb{R}^2 equipped with the metric

$$d(x,y)=\alpha|x_1-y_1|+|x_2-y_2|, \qquad x=(x_1,x_2), \quad y=(y_1,y_2)$$
 is complete, where $\alpha>0$ is fixed. [12]

END OF EXAMINATION