University of Swaziland

Supplementary Examination, July 2011

BSc IV, Bass IV, BEd IV

Title of Paper

: Abstract Algebra II

Course Number

: M423

Time Allowed

: Three (3) hours

Instructions

1. This paper consists of SEVEN questions.

- 2. Each question is worth 20%.
- 3. Answer ANY FIVE questions.
- 4. Show all your working.

THIS PAPER SHOULD NOT BE OPENED UNTIL PERMISSION HAS BEEN GIVEN BY THE INVIGILATOR.

QUESTION 1

(a) What is a divisor of zero in a ring R?

[2]

148

(b) Find q(x) and r(x) as described by the division algorithm so that f(x) = q(x)g(x) + r(x) with r(x) = 0 or $\deg(r(x)) < \deg(g(x))$ for

$$f(x) = x^5 - 2x^4 + 3x - 5$$
, $g(x) = 2x + 1$ in $Z_{11}[x]$.

[5]

- (c) Let R be a commutative ring. For an arbitrary element p in R, form the set $P = \{pr : r \in R\}$. It is clear that $0 \in P$ (take r = 0 in R to get p0 = 0 in P).
 - i. Prove that P is a subring of R by showing that P is closed with respect to the ring operations and that each element of P has its additive inverse in P. [5]
 - ii. Show that P is an ideal in R. [4]
- (d) Find all $c \in \mathbb{Z}_3$ such that $\mathbb{Z}_3[x]/\langle x^3 + cx^2 + 1 \rangle$ is a field.

[4]

QUESTION 2

- (a) Determine the irreducibility or otherwise of
 - i. $x^3 + 3x^2 8$ in $\mathbb{Q}[x]$ [6]
 - ii. $8x^3 + 6x^2 9x + 24$ in $\mathbb{Q}[x]$. [4]
- (b) For $a, b \in \mathbb{Z}$, define $a \oplus b = a + b + 1$ and $a \odot b = a + b + ab$. Show that \mathbb{Z} is a commutative ring with respect to \oplus and \odot .

QUESTION 3

(a) Prove that every finite integral domain is a field.

[10]

(b) Find all the units in

i. \mathbb{Z}_4 ii. $\mathbb{Z}_7[x]$

[2,3]

(c) Show that the set $S = \{2a : a \in \mathbb{Z}\}$ with addition and multiplication as defined on \mathbb{Z} is a ring. [*Hint:* First show that the set is closed with respect to the ring operations.] [5]

QUESTION 4

- (a) In the ring \mathbb{Z}_n prove that
 - i. the divisors of zero are those nonzero elements that are NOT relatively prime to n, (5)
 - ii. the elements that are relatively prime to n cannot be divisors of zero. (5)
- (b) Determine whether the indicated operations of addition and multiplication are closed on the set. If they are, does the set together with the operations form a ring?
 - i. $S = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$ with addition and multiplication as defined on \mathbb{Z} .
 - ii. $\mathscr{A} = \{A \in M_2(\mathbb{R}) : \det(A) = 0\}$ with the usual addition and multiplication of matrices.

[10]

Turn Over

140

QUESTION 5

- (a) Define
 - i. the characteristic of a ring,

[3]

ii. a ring homomorphism,

[2]

iii. a unit in a ring with unity.

[2]

(b) Consider the Evaluation Homomorphism $\phi_{\alpha}: F[x] \to E$, where F is a subfield of the field E. Let $F = \mathbb{Q}$ and $E = \mathbb{C}$. Show that

$$x^2 + 1 \in \text{Ker}(\phi_i)$$
.

[2]

(c) Prove that every field is an integral domain.

[7]

[4]

(d) Does the polynomial $4x^{10} - 9x^3 + 24x - 18$ satisfy Eisensten's criterion for irreducibility over \mathbb{Q} ? Explain.

QUESTION 6

(a) In each case, give an example of a ring satisfying the given condition.

(b) For each of the given algebraic number $\alpha \in \mathbb{C}$, find $\operatorname{irred}(\alpha, \mathbb{Q})$ and $\operatorname{deg}(\alpha, \mathbb{Q})$.

- i. A commutative ring with zero divisors.
- ii. A ring with no zero divisors.

[6]

- iii. A ring that is not a division ring.
 - i. $\sqrt{\frac{1}{3} + \sqrt{7}}$
 - ii. $\sqrt{2} + i$

[8]

(c) Let $\phi: R \to R'$ be ring homomorphism. Show that ϕ is one-to-one and onto if and only if $\ker(\phi) = \{0\}$

QUESTION 7

(a) Is $\mathbb{Q}[x]/\langle x^2 - 6x + 6 \rangle$ a field? Explain.

[5]

(b) i. Show that $x^2 + x + 1$ is irreducible over \mathbb{Z}_2 .

[2]

ii. Let α be a zero of $x^2 + x + 1$ in the extension field of $\mathbb{Z}_2(\alpha)$ of \mathbb{Z}_2 . List the elements of $\mathbb{Z}_2(\alpha)$ and give the addition and multiplication tables of $\mathbb{Z}_2(\alpha)$.

[10]

iii. Find the factorisation of $x^2 + x + 1$ into linear factors in $\mathbb{Z}_2(\alpha)$.

[3]

End of Examination Paper____